gaps_online.tof.visual#
Variable plot visualization FIXME - might get moved around
Functions
|
Plot the relevant quantities from the event builder heartbeats |
|
Show the rate and lost_rate as read from MTB register over time |
|
Plot the HG vs the LG (trigger) hits |
|
The LTB thresholds over the given times. |
|
Plot the paddle charge (from the TofHits) in a symmetric 2d histogram |
|
Create the TOF projection plots and mark the respective panels corresponding to the ReadoutBoard |
|
Create a general timeseries plot for multiple variables over the mission elapsed time. |
|
Create a general timeseries plot for a variable over the mission elapsed time |
|
Project the whole TOF on the 2d plane in a meaningful way. |
|
Show the projection of all paddles which are facing in z-direction These are the whole Umbrella as well as CBE TOP + Bottom. |
|
Project the sides of the cube on xz and yz as well as add the 'edge' paddles. |
|
Project the cortina on xz and yz as well as add the 'edge' paddles. |
- gaps_online.tof.visual.timeseries_plot(times, data, title='', xlabel='', ylabel='', savename='')#
Create a general timeseries plot for a variable over the mission elapsed time
- # Arguments:
times : gcutimes, ideally re-normalized to run start time
data : quantity to plot over time
- # Keyword Arguments:
title : axis title xlabel : label for the x-axis ylabel : label for the y-axis savevname : save plot with this filename,
if None, don't save
- gaps_online.tof.visual.timeseries_multiplot(times, variables, labels, title='', xlabel='', ylabel='', savename='')#
Create a general timeseries plot for multiple variables over the mission elapsed time. This is basically the same as timeseries_plot, however, for multiple variables which will all be plotted in the same axis.
- # Arguments:
times : gcutimes, ideally re-normalized to run start time
- variablesquantities to plot over time. This should be a list
of lists (or arrays)
- labelsindividual labels for the variables, same ordering
structure
- # Keyword Arguments:
title : axis title xlabel : label for the x-axis ylabel : label for the y-axis savevname : save plot with this filename,
if None, don't save
- gaps_online.tof.visual.tof_projection_xy(paddle_occupancy={}, cmap=<matplotlib.colors.LinearSegmentedColormap object>, show_cbar=True)#
Show the projection of all paddles which are facing in z-direction These are the whole Umbrella as well as CBE TOP + Bottom. While this plot can show the occupancy of TOF paddles, it can also be 'hijacked' to just highlight certain paddles.
- # Keyword Arguments:
paddle_occupancy : The number of events per paddle cmap : Colormap - can be lambda function
to return color value based on 'occupancy' numbker
show_cbar : Show the colorbar on the figure
- gaps_online.tof.visual.unroll_cbe_sides(paddle_occupancy={}, cmap=<matplotlib.colors.LinearSegmentedColormap object>, show_cbar=True)#
Project the sides of the cube on xz and yz as well as add the 'edge' paddles.
While this plot can show the occupancy of TOF paddles, it can also be 'hijacked' to just highlight certain paddles.
- # Keyword Arguments:
paddle_occupancy : The number of events per paddle cmap : Colormap - can be lambda function
to return color value based on 'occupancy' numbker
show_cbar : Show the colorbar on the figure
- gaps_online.tof.visual.unroll_cor(paddle_occupancy={}, cmap=<matplotlib.colors.LinearSegmentedColormap object>, show_cbar=True)#
Project the cortina on xz and yz as well as add the 'edge' paddles.
While this plot can show the occupancy of TOF paddles, it can also be 'hijacked' to just highlight certain paddles.
- # Keyword Arguments:
paddle_occupancy : The number of events per paddle cmap : Colormap - can be lambda function
to return color value based on 'occupancy' numbker
show_cbar : Show the colorbar on the figure
- gaps_online.tof.visual.tof_2dproj(paddle_occupancy={}, cmap=<matplotlib.colors.LinearSegmentedColormap object>, show_cbar=True)#
Project the whole TOF on the 2d plane in a meaningful way.
While this plot can show the occupancy of TOF paddles, it can also be 'hijacked' to just highlight certain paddles.
- # Keyword Arguments:
paddle_occupancy : The number of events per paddle cmap : Colormap - can be lambda function
to return color value based on 'occupancy' numbker
show_cbar : Show the colorbar on the figure
- gaps_online.tof.visual.plot_rb_paddles(rb)#
Create the TOF projection plots and mark the respective panels corresponding to the ReadoutBoard
- # Arguments:
rb : go.db.ReadoutBoard
- gaps_online.tof.visual.plot_ltb_threshold_timeseries(times, ltb_hk, savename=None)#
The LTB thresholds over the given times.
- # Arguments:
times : mission elapsed time
ltb_hk : a list of LTBMoniData
- # Keyword Arguments:
savename : filename of the plot to save
- gaps_online.tof.visual.plot_paddle_charge2d(reader=None, charge_a=[], charge_b=[], paddle_id=0, charge_bins=array([0., 1.44927536, 2.89855072, 4.34782609, 5.79710145, 7.24637681, 8.69565217, 10.14492754, 11.5942029, 13.04347826, 14.49275362, 15.94202899, 17.39130435, 18.84057971, 20.28985507, 21.73913043, 23.1884058, 24.63768116, 26.08695652, 27.53623188, 28.98550725, 30.43478261, 31.88405797, 33.33333333, 34.7826087, 36.23188406, 37.68115942, 39.13043478, 40.57971014, 42.02898551, 43.47826087, 44.92753623, 46.37681159, 47.82608696, 49.27536232, 50.72463768, 52.17391304, 53.62318841, 55.07246377, 56.52173913, 57.97101449, 59.42028986, 60.86956522, 62.31884058, 63.76811594, 65.2173913, 66.66666667, 68.11594203, 69.56521739, 71.01449275, 72.46376812, 73.91304348, 75.36231884, 76.8115942, 78.26086957, 79.71014493, 81.15942029, 82.60869565, 84.05797101, 85.50724638, 86.95652174, 88.4057971, 89.85507246, 91.30434783, 92.75362319, 94.20289855, 95.65217391, 97.10144928, 98.55072464, 100.]), plot_dir=None)#
Plot the paddle charge (from the TofHits) in a symmetric 2d histogram
- gaps_online.tof.visual.mtb_rate_plot(datafiles=None, mtbmonidata=[], use_gcutime=False, mtb_moni_interval=10, plot_dir=None)#
Show the rate and lost_rate as read from MTB register over time
# Arguments
- datafiles: Can be either str, pathlib.Path or a list of these, or None.
If not None, walk over them and extract the MTB moni data
- gaps_online.tof.visual.plot_hg_lg_hits(reader=None, events=[], plot_dir=None, split_by_threshold=False)#
Plot the HG vs the LG (trigger) hits
- gaps_online.tof.visual.eventbld_hb_plots(reader=None, heartbeats=[])#
Plot the relevant quantities from the event builder heartbeats