gaps_online.tof.analysis#

Functions

calc_rms(data)

root mean square calculation

create_occupancy_dict([reader, events, ...])

Create a dictionary of paddle id vs nhits

find_paddle(hit, paddles)

Get a paddle id for a trigger hit where the trigger hit is (dsi, j, ch)

gaps_online.tof.analysis.find_paddle(hit, paddles)#

Get a paddle id for a trigger hit where the trigger hit is (dsi, j, ch)

gaps_online.tof.analysis.create_occupancy_dict(reader=None, events=[], normalize=True, use_trigger_hits=False, mark_0_as_bad=False, cbe_side=True, cor_side=True)#

Create a dictionary of paddle id vs nhits

This can either accept a reader or a list of events. Use reader when memory is sparse and events when time is of the essence

# Arguments:
  • reader - either TofPacket or TelemetryPacketReader. The reader should be primed in a way

    that it only spits out MergedEvents, TofEventSummary or TofEvents

  • use_trigger_hits - instead of plotting TofHits, just use the triggered hits for the occupancy

  • cbe_side - add the CBE sides to the occupancy dictionary. It might make sense to exclude

    them for normalization reasons

  • cor_side - add the COR sides to the occupancy dictionary. It might make sense to exclude

    them for normalization reasons

gaps_online.tof.analysis.calc_rms(data)#

root mean square calculation