pub struct GoodThomasAlgorithmSmall<T> { /* private fields */ }
Expand description
Implementation of the Good-Thomas Algorithm, specialized for smaller input sizes
This algorithm factors a size n FFT into n1 * n2, where GCD(n1, n2) == 1
Conceptually, this algorithm is very similar to MixedRadix, except because GCD(n1, n2) == 1 we can do some number theory trickery to reduce the number of floating point operations. It typically performs better than MixedRadixSmall, especially at the smallest sizes.
// Computes a forward FFT of size 56 using GoodThomasAlgorithmSmall
use std::sync::Arc;
use rustfft::algorithm::GoodThomasAlgorithmSmall;
use rustfft::algorithm::butterflies::{Butterfly7, Butterfly8};
use rustfft::{Fft, FftDirection};
use rustfft::num_complex::Complex;
let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 56];
// we need to find an n1 and n2 such that n1 * n2 == 56 and GCD(n1, n2) == 1
// n1 = 7 and n2 = 8 satisfies this
let inner_fft_n1 = Arc::new(Butterfly7::new(FftDirection::Forward));
let inner_fft_n2 = Arc::new(Butterfly8::new(FftDirection::Forward));
// the good-thomas FFT length will be inner_fft_n1.len() * inner_fft_n2.len() = 56
let fft = GoodThomasAlgorithmSmall::new(inner_fft_n1, inner_fft_n2);
fft.process(&mut buffer);
Implementations§
Trait Implementations§
Source§impl<T: FftNum> Direction for GoodThomasAlgorithmSmall<T>
impl<T: FftNum> Direction for GoodThomasAlgorithmSmall<T>
Source§fn fft_direction(&self) -> FftDirection
fn fft_direction(&self) -> FftDirection
Returns FftDirection::Forward if this instance computes forward FFTs, or FftDirection::Inverse for inverse FFTs
Source§impl<T: FftNum> Fft<T> for GoodThomasAlgorithmSmall<T>
impl<T: FftNum> Fft<T> for GoodThomasAlgorithmSmall<T>
Source§fn process_outofplace_with_scratch(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
scratch: &mut [Complex<T>],
)
fn process_outofplace_with_scratch( &self, input: &mut [Complex<T>], output: &mut [Complex<T>], scratch: &mut [Complex<T>], )
Divides
input
and output
into chunks of size self.len()
, and computes a FFT on each chunk. Read moreSource§fn process_with_scratch(
&self,
buffer: &mut [Complex<T>],
scratch: &mut [Complex<T>],
)
fn process_with_scratch( &self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>], )
Source§fn get_inplace_scratch_len(&self) -> usize
fn get_inplace_scratch_len(&self) -> usize
Returns the size of the scratch buffer required by
process_with_scratch
Read moreSource§fn get_outofplace_scratch_len(&self) -> usize
fn get_outofplace_scratch_len(&self) -> usize
Returns the size of the scratch buffer required by
process_outofplace_with_scratch
Read moreAuto Trait Implementations§
impl<T> Freeze for GoodThomasAlgorithmSmall<T>
impl<T> !RefUnwindSafe for GoodThomasAlgorithmSmall<T>
impl<T> Send for GoodThomasAlgorithmSmall<T>
impl<T> Sync for GoodThomasAlgorithmSmall<T>
impl<T> Unpin for GoodThomasAlgorithmSmall<T>
impl<T> !UnwindSafe for GoodThomasAlgorithmSmall<T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more