rustfft/algorithm/good_thomas_algorithm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
use std::cmp::max;
use std::sync::Arc;
use num_complex::Complex;
use num_integer::Integer;
use strength_reduce::StrengthReducedUsize;
use transpose;
use crate::array_utils;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{common::FftNum, FftDirection};
use crate::{Direction, Fft, Length};
/// Implementation of the [Good-Thomas Algorithm (AKA Prime Factor Algorithm)](https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm)
///
/// This algorithm factors a size n FFT into n1 * n2, where GCD(n1, n2) == 1
///
/// Conceptually, this algorithm is very similar to the Mixed-Radix, except because GCD(n1, n2) == 1 we can do some
/// number theory trickery to reduce the number of floating-point multiplications and additions. Additionally, It can
/// be faster than Mixed-Radix at sizes below 10,000 or so.
///
/// ~~~
/// // Computes a forward FFT of size 1200, using the Good-Thomas Algorithm
/// use rustfft::algorithm::GoodThomasAlgorithm;
/// use rustfft::{Fft, FftPlanner};
/// use rustfft::num_complex::Complex;
/// use rustfft::num_traits::Zero;
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 1200];
///
/// // we need to find an n1 and n2 such that n1 * n2 == 1200 and GCD(n1, n2) == 1
/// // n1 = 48 and n2 = 25 satisfies this
/// let mut planner = FftPlanner::new();
/// let inner_fft_n1 = planner.plan_fft_forward(48);
/// let inner_fft_n2 = planner.plan_fft_forward(25);
///
/// // the good-thomas FFT length will be inner_fft_n1.len() * inner_fft_n2.len() = 1200
/// let fft = GoodThomasAlgorithm::new(inner_fft_n1, inner_fft_n2);
/// fft.process(&mut buffer);
/// ~~~
pub struct GoodThomasAlgorithm<T> {
width: usize,
width_size_fft: Arc<dyn Fft<T>>,
height: usize,
height_size_fft: Arc<dyn Fft<T>>,
reduced_width: StrengthReducedUsize,
reduced_width_plus_one: StrengthReducedUsize,
inplace_scratch_len: usize,
outofplace_scratch_len: usize,
len: usize,
direction: FftDirection,
}
impl<T: FftNum> GoodThomasAlgorithm<T> {
/// Creates a FFT instance which will process inputs/outputs of size `width_fft.len() * height_fft.len()`
///
/// `GCD(width_fft.len(), height_fft.len())` must be equal to 1
pub fn new(mut width_fft: Arc<dyn Fft<T>>, mut height_fft: Arc<dyn Fft<T>>) -> Self {
assert_eq!(
width_fft.fft_direction(), height_fft.fft_direction(),
"width_fft and height_fft must have the same direction. got width direction={}, height direction={}",
width_fft.fft_direction(), height_fft.fft_direction());
let mut width = width_fft.len();
let mut height = height_fft.len();
let direction = width_fft.fft_direction();
// This algorithm doesn't work if width and height aren't coprime
let gcd = num_integer::gcd(width as i64, height as i64);
assert!(gcd == 1,
"Invalid width and height for Good-Thomas Algorithm (width={}, height={}): Inputs must be coprime",
width,
height);
// The trick we're using for our index remapping will only work if width < height, so just swap them if it isn't
if width > height {
std::mem::swap(&mut width, &mut height);
std::mem::swap(&mut width_fft, &mut height_fft);
}
let len = width * height;
// Collect some data about what kind of scratch space our inner FFTs need
let width_inplace_scratch = width_fft.get_inplace_scratch_len();
let height_inplace_scratch = height_fft.get_inplace_scratch_len();
let height_outofplace_scratch = height_fft.get_outofplace_scratch_len();
// Computing the scratch we'll require is a somewhat confusing process.
// When we compute an out-of-place FFT, both of our inner FFTs are in-place
// When we compute an inplace FFT, our inner width FFT will be inplace, and our height FFT will be out-of-place
// For the out-of-place FFT, one of 2 things can happen regarding scratch:
// - If the required scratch of both FFTs is <= self.len(), then we can use the input or output buffer as scratch, and so we need 0 extra scratch
// - If either of the inner FFTs require more, then we'll have to request an entire scratch buffer for the inner FFTs,
// whose size is the max of the two inner FFTs' required scratch
let max_inner_inplace_scratch = max(height_inplace_scratch, width_inplace_scratch);
let outofplace_scratch_len = if max_inner_inplace_scratch > len {
max_inner_inplace_scratch
} else {
0
};
// For the in-place FFT, again the best case is that we can just bounce data around between internal buffers, and the only inplace scratch we need is self.len()
// If our height fft's OOP FFT requires any scratch, then we can tack that on the end of our own scratch, and use split_at_mut to separate our own from our internal FFT's
// Likewise, if our width inplace FFT requires more inplace scracth than self.len(), we can tack that on to the end of our own inplace scratch.
// Thus, the total inplace scratch is our own length plus the max of what the two inner FFTs will need
let inplace_scratch_len = len
+ max(
if width_inplace_scratch > len {
width_inplace_scratch
} else {
0
},
height_outofplace_scratch,
);
Self {
width,
width_size_fft: width_fft,
height,
height_size_fft: height_fft,
reduced_width: StrengthReducedUsize::new(width),
reduced_width_plus_one: StrengthReducedUsize::new(width + 1),
inplace_scratch_len,
outofplace_scratch_len,
len,
direction,
}
}
fn reindex_input(&self, source: &[Complex<T>], destination: &mut [Complex<T>]) {
// A critical part of the good-thomas algorithm is re-indexing the inputs and outputs.
// To remap the inputs, we will use the CRT mapping, paired with the normal transpose we'd do for mixed radix.
//
// The algorithm for the CRT mapping will work like this:
// 1: Keep an output index, initialized to 0
// 2: The output index will be incremented by width + 1
// 3: At the start of the row, compute if we will increment output_index past self.len()
// 3a: If we will, then compute exactly how many increments it will take,
// 3b: Increment however many times as we scan over the input row, copying each element to the output index
// 3c: Subtract self.len() from output_index
// 4: Scan over the rest of the row, incrementing output_index, and copying each element to output_index, thne incrementing output_index
// 5: The first index of each row will be the final index of the previous row plus one, but because of our incrementing (width+1) inside the loop, we overshot, so at the end of the row, subtract width from output_index
//
// This ends up producing the same result as computing the multiplicative inverse of width mod height and etc by the CRT mapping, but with only one integer division per row, instead of one per element.
let mut destination_index = 0;
for mut source_row in source.chunks_exact(self.width) {
let increments_until_cycle =
1 + (self.len() - destination_index) / self.reduced_width_plus_one;
// If we will have to rollover output_index on this row, do it in a separate loop
if increments_until_cycle < self.width {
let (pre_cycle_row, post_cycle_row) = source_row.split_at(increments_until_cycle);
for input_element in pre_cycle_row {
destination[destination_index] = *input_element;
destination_index += self.reduced_width_plus_one.get();
}
// Store the split slice back to input_row, os that outside the loop, we can finish the job of iterating the row
source_row = post_cycle_row;
destination_index -= self.len();
}
// Loop over the entire row (if we did not roll over) or what's left of the row (if we did) and keep incrementing output_row
for input_element in source_row {
destination[destination_index] = *input_element;
destination_index += self.reduced_width_plus_one.get();
}
// The first index of the next will be the final index this row, plus one.
// But because of our incrementing (width+1) inside the loop above, we overshot, so subtract width, and we'll get (width + 1) - width = 1
destination_index -= self.width;
}
}
fn reindex_output(&self, source: &[Complex<T>], destination: &mut [Complex<T>]) {
// A critical part of the good-thomas algorithm is re-indexing the inputs and outputs.
// To remap the outputs, we will use the ruritanian mapping, paired with the normal transpose we'd do for mixed radix.
//
// The algorithm for the ruritanian mapping will work like this:
// 1: At the start of every row, compute the output index = (y * self.height) % self.width
// 2: We will increment this output index by self.width for every element
// 3: Compute where in the row the output index will wrap around
// 4: Instead of starting copying from the beginning of the row, start copying from after the rollover point
// 5: When we hit the end of the row, continue from the beginning of the row, continuing to increment the output index by self.width
//
// This achieves the same result as the modular arithmetic ofthe ruritanian mapping, but with only one integer divison per row, instead of one per element
for (y, source_chunk) in source.chunks_exact(self.height).enumerate() {
let (quotient, remainder) =
StrengthReducedUsize::div_rem(y * self.height, self.reduced_width);
// Compute our base index and starting point in the row
let mut destination_index = remainder;
let start_x = self.height - quotient;
// Process the first part of the row
for x in start_x..self.height {
destination[destination_index] = source_chunk[x];
destination_index += self.width;
}
// Wrap back around to the beginning of the row and keep incrementing
for x in 0..start_x {
destination[destination_index] = source_chunk[x];
destination_index += self.width;
}
}
}
fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
let (scratch, inner_scratch) = scratch.split_at_mut(self.len());
// Re-index the input, copying from the buffer to the scratch in the process
self.reindex_input(buffer, scratch);
// run FFTs of size `width`
let width_scratch = if inner_scratch.len() > buffer.len() {
&mut inner_scratch[..]
} else {
&mut buffer[..]
};
self.width_size_fft
.process_with_scratch(scratch, width_scratch);
// transpose
transpose::transpose(scratch, buffer, self.width, self.height);
// run FFTs of size 'height'
self.height_size_fft
.process_outofplace_with_scratch(buffer, scratch, inner_scratch);
// Re-index the output, copying from the scratch to the buffer in the process
self.reindex_output(scratch, buffer);
}
fn perform_fft_out_of_place(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
scratch: &mut [Complex<T>],
) {
// Re-index the input, copying from the input to the output in the process
self.reindex_input(input, output);
// run FFTs of size `width`
let width_scratch = if scratch.len() > input.len() {
&mut scratch[..]
} else {
&mut input[..]
};
self.width_size_fft
.process_with_scratch(output, width_scratch);
// transpose
transpose::transpose(output, input, self.width, self.height);
// run FFTs of size 'height'
let height_scratch = if scratch.len() > output.len() {
&mut scratch[..]
} else {
&mut output[..]
};
self.height_size_fft
.process_with_scratch(input, height_scratch);
// Re-index the output, copying from the input to the output in the process
self.reindex_output(input, output);
}
}
boilerplate_fft!(
GoodThomasAlgorithm,
|this: &GoodThomasAlgorithm<_>| this.len,
|this: &GoodThomasAlgorithm<_>| this.inplace_scratch_len,
|this: &GoodThomasAlgorithm<_>| this.outofplace_scratch_len
);
/// Implementation of the Good-Thomas Algorithm, specialized for smaller input sizes
///
/// This algorithm factors a size n FFT into n1 * n2, where GCD(n1, n2) == 1
///
/// Conceptually, this algorithm is very similar to MixedRadix, except because GCD(n1, n2) == 1 we can do some
/// number theory trickery to reduce the number of floating point operations. It typically performs
/// better than MixedRadixSmall, especially at the smallest sizes.
///
/// ~~~
/// // Computes a forward FFT of size 56 using GoodThomasAlgorithmSmall
/// use std::sync::Arc;
/// use rustfft::algorithm::GoodThomasAlgorithmSmall;
/// use rustfft::algorithm::butterflies::{Butterfly7, Butterfly8};
/// use rustfft::{Fft, FftDirection};
/// use rustfft::num_complex::Complex;
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 56];
///
/// // we need to find an n1 and n2 such that n1 * n2 == 56 and GCD(n1, n2) == 1
/// // n1 = 7 and n2 = 8 satisfies this
/// let inner_fft_n1 = Arc::new(Butterfly7::new(FftDirection::Forward));
/// let inner_fft_n2 = Arc::new(Butterfly8::new(FftDirection::Forward));
///
/// // the good-thomas FFT length will be inner_fft_n1.len() * inner_fft_n2.len() = 56
/// let fft = GoodThomasAlgorithmSmall::new(inner_fft_n1, inner_fft_n2);
/// fft.process(&mut buffer);
/// ~~~
pub struct GoodThomasAlgorithmSmall<T> {
width: usize,
width_size_fft: Arc<dyn Fft<T>>,
height: usize,
height_size_fft: Arc<dyn Fft<T>>,
input_output_map: Box<[usize]>,
direction: FftDirection,
}
impl<T: FftNum> GoodThomasAlgorithmSmall<T> {
/// Creates a FFT instance which will process inputs/outputs of size `width_fft.len() * height_fft.len()`
///
/// `GCD(width_fft.len(), height_fft.len())` must be equal to 1
pub fn new(width_fft: Arc<dyn Fft<T>>, height_fft: Arc<dyn Fft<T>>) -> Self {
assert_eq!(
width_fft.fft_direction(), height_fft.fft_direction(),
"n1_fft and height_fft must have the same direction. got width direction={}, height direction={}",
width_fft.fft_direction(), height_fft.fft_direction());
let width = width_fft.len();
let height = height_fft.len();
let len = width * height;
assert_eq!(width_fft.get_outofplace_scratch_len(), 0, "GoodThomasAlgorithmSmall should only be used with algorithms that require 0 out-of-place scratch. Width FFT (len={}) requires {}, should require 0", width, width_fft.get_outofplace_scratch_len());
assert_eq!(height_fft.get_outofplace_scratch_len(), 0, "GoodThomasAlgorithmSmall should only be used with algorithms that require 0 out-of-place scratch. Height FFT (len={}) requires {}, should require 0", height, height_fft.get_outofplace_scratch_len());
assert!(width_fft.get_inplace_scratch_len() <= width, "GoodThomasAlgorithmSmall should only be used with algorithms that require little inplace scratch. Width FFT (len={}) requires {}, should require {} or less", width, width_fft.get_inplace_scratch_len(), width);
assert!(height_fft.get_inplace_scratch_len() <= height, "GoodThomasAlgorithmSmall should only be used with algorithms that require little inplace scratch. Height FFT (len={}) requires {}, should require {} or less", height, height_fft.get_inplace_scratch_len(), height);
// compute the multiplicative inverse of width mod height and vice versa. x will be width mod height, and y will be height mod width
let gcd_data = i64::extended_gcd(&(width as i64), &(height as i64));
assert!(gcd_data.gcd == 1,
"Invalid input width and height to Good-Thomas Algorithm: ({},{}): Inputs must be coprime",
width,
height);
// width_inverse or height_inverse might be negative, make it positive by wrapping
let width_inverse = if gcd_data.x >= 0 {
gcd_data.x
} else {
gcd_data.x + height as i64
} as usize;
let height_inverse = if gcd_data.y >= 0 {
gcd_data.y
} else {
gcd_data.y + width as i64
} as usize;
// NOTE: we are precomputing the input and output reordering indexes, because benchmarking shows that it's 10-20% faster
// If we wanted to optimize for memory use or setup time instead of multiple-FFT speed, we could compute these on the fly in the perform_fft() method
let input_iter = (0..len)
.map(|i| (i % width, i / width))
.map(|(x, y)| (x * height + y * width) % len);
let output_iter = (0..len).map(|i| (i % height, i / height)).map(|(y, x)| {
(x * height * height_inverse as usize + y * width * width_inverse as usize) % len
});
let input_output_map: Vec<usize> = input_iter.chain(output_iter).collect();
Self {
direction: width_fft.fft_direction(),
width,
width_size_fft: width_fft,
height,
height_size_fft: height_fft,
input_output_map: input_output_map.into_boxed_slice(),
}
}
fn perform_fft_out_of_place(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
_scratch: &mut [Complex<T>],
) {
// These asserts are for the unsafe blocks down below. we're relying on the optimizer to get rid of this assert
assert_eq!(self.len(), input.len());
assert_eq!(self.len(), output.len());
let (input_map, output_map) = self.input_output_map.split_at(self.len());
// copy the input using our reordering mapping
for (output_element, &input_index) in output.iter_mut().zip(input_map.iter()) {
*output_element = input[input_index];
}
// run FFTs of size `width`
self.width_size_fft.process_with_scratch(output, input);
// transpose
unsafe { array_utils::transpose_small(self.width, self.height, output, input) };
// run FFTs of size 'height'
self.height_size_fft.process_with_scratch(input, output);
// copy to the output, using our output redordeing mapping
for (input_element, &output_index) in input.iter().zip(output_map.iter()) {
output[output_index] = *input_element;
}
}
fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
// These asserts are for the unsafe blocks down below. we're relying on the optimizer to get rid of this assert
assert_eq!(self.len(), buffer.len());
assert_eq!(self.len(), scratch.len());
let (input_map, output_map) = self.input_output_map.split_at(self.len());
// copy the input using our reordering mapping
for (output_element, &input_index) in scratch.iter_mut().zip(input_map.iter()) {
*output_element = buffer[input_index];
}
// run FFTs of size `width`
self.width_size_fft.process_with_scratch(scratch, buffer);
// transpose
unsafe { array_utils::transpose_small(self.width, self.height, scratch, buffer) };
// run FFTs of size 'height'
self.height_size_fft
.process_outofplace_with_scratch(buffer, scratch, &mut []);
// copy to the output, using our output redordeing mapping
for (input_element, &output_index) in scratch.iter().zip(output_map.iter()) {
buffer[output_index] = *input_element;
}
}
}
boilerplate_fft!(
GoodThomasAlgorithmSmall,
|this: &GoodThomasAlgorithmSmall<_>| this.width * this.height,
|this: &GoodThomasAlgorithmSmall<_>| this.len(),
|_| 0
);
#[cfg(test)]
mod unit_tests {
use super::*;
use crate::test_utils::check_fft_algorithm;
use crate::{algorithm::Dft, test_utils::BigScratchAlgorithm};
use num_integer::gcd;
use num_traits::Zero;
use std::sync::Arc;
#[test]
fn test_good_thomas() {
for width in 1..12 {
for height in 1..12 {
if gcd(width, height) == 1 {
test_good_thomas_with_lengths(width, height, FftDirection::Forward);
test_good_thomas_with_lengths(width, height, FftDirection::Inverse);
}
}
}
}
#[test]
fn test_good_thomas_small() {
let butterfly_sizes = [2, 3, 4, 5, 6, 7, 8, 16];
for width in &butterfly_sizes {
for height in &butterfly_sizes {
if gcd(*width, *height) == 1 {
test_good_thomas_small_with_lengths(*width, *height, FftDirection::Forward);
test_good_thomas_small_with_lengths(*width, *height, FftDirection::Inverse);
}
}
}
}
fn test_good_thomas_with_lengths(width: usize, height: usize, direction: FftDirection) {
let width_fft = Arc::new(Dft::new(width, direction)) as Arc<dyn Fft<f32>>;
let height_fft = Arc::new(Dft::new(height, direction)) as Arc<dyn Fft<f32>>;
let fft = GoodThomasAlgorithm::new(width_fft, height_fft);
check_fft_algorithm(&fft, width * height, direction);
}
fn test_good_thomas_small_with_lengths(width: usize, height: usize, direction: FftDirection) {
let width_fft = Arc::new(Dft::new(width, direction)) as Arc<dyn Fft<f32>>;
let height_fft = Arc::new(Dft::new(height, direction)) as Arc<dyn Fft<f32>>;
let fft = GoodThomasAlgorithmSmall::new(width_fft, height_fft);
check_fft_algorithm(&fft, width * height, direction);
}
#[test]
fn test_output_mapping() {
let width = 15;
for height in 3..width {
if gcd(width, height) == 1 {
let width_fft =
Arc::new(Dft::new(width, FftDirection::Forward)) as Arc<dyn Fft<f32>>;
let height_fft =
Arc::new(Dft::new(height, FftDirection::Forward)) as Arc<dyn Fft<f32>>;
let fft = GoodThomasAlgorithm::new(width_fft, height_fft);
let mut buffer = vec![Complex { re: 0.0, im: 0.0 }; fft.len()];
fft.process(&mut buffer);
}
}
}
// Verify that the Good-Thomas algorithm correctly provides scratch space to inner FFTs
#[test]
fn test_good_thomas_inner_scratch() {
let scratch_lengths = [1, 5, 24];
let mut inner_ffts = Vec::new();
for &len in &scratch_lengths {
for &inplace_scratch in &scratch_lengths {
for &outofplace_scratch in &scratch_lengths {
inner_ffts.push(Arc::new(BigScratchAlgorithm {
len,
inplace_scratch,
outofplace_scratch,
direction: FftDirection::Forward,
}) as Arc<dyn Fft<f32>>);
}
}
}
for width_fft in inner_ffts.iter() {
for height_fft in inner_ffts.iter() {
if width_fft.len() == height_fft.len() {
continue;
}
let fft = GoodThomasAlgorithm::new(Arc::clone(width_fft), Arc::clone(height_fft));
let mut inplace_buffer = vec![Complex::zero(); fft.len()];
let mut inplace_scratch = vec![Complex::zero(); fft.get_inplace_scratch_len()];
fft.process_with_scratch(&mut inplace_buffer, &mut inplace_scratch);
let mut outofplace_input = vec![Complex::zero(); fft.len()];
let mut outofplace_output = vec![Complex::zero(); fft.len()];
let mut outofplace_scratch =
vec![Complex::zero(); fft.get_outofplace_scratch_len()];
fft.process_outofplace_with_scratch(
&mut outofplace_input,
&mut outofplace_output,
&mut outofplace_scratch,
);
}
}
}
}