Struct Cursor

1.0.0 · Source
pub struct Cursor<T> { /* private fields */ }
Expand description

A Cursor wraps an in-memory buffer and provides it with a Seek implementation.

Cursors are used with in-memory buffers, anything implementing AsRef<[u8]>, to allow them to implement Read and/or Write, allowing these buffers to be used anywhere you might use a reader or writer that does actual I/O.

The standard library implements some I/O traits on various types which are commonly used as a buffer, like Cursor<Vec<u8>> and Cursor<&[u8]>.

§Examples

We may want to write bytes to a File in our production code, but use an in-memory buffer in our tests. We can do this with Cursor:

use std::io::prelude::*;
use std::io::{self, SeekFrom};
use std::fs::File;

// a library function we've written
fn write_ten_bytes_at_end<W: Write + Seek>(mut writer: W) -> io::Result<()> {
    writer.seek(SeekFrom::End(-10))?;

    for i in 0..10 {
        writer.write(&[i])?;
    }

    // all went well
    Ok(())
}

// Here's some code that uses this library function.
//
// We might want to use a BufReader here for efficiency, but let's
// keep this example focused.
let mut file = File::create("foo.txt")?;
// First, we need to allocate 10 bytes to be able to write into.
file.set_len(10)?;

write_ten_bytes_at_end(&mut file)?;

// now let's write a test
#[test]
fn test_writes_bytes() {
    // setting up a real File is much slower than an in-memory buffer,
    // let's use a cursor instead
    use std::io::Cursor;
    let mut buff = Cursor::new(vec![0; 15]);

    write_ten_bytes_at_end(&mut buff).unwrap();

    assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
}

Implementations§

Source§

impl<T> Cursor<T>

1.0.0 (const: 1.79.0) · Source

pub const fn new(inner: T) -> Cursor<T>

Creates a new cursor wrapping the provided underlying in-memory buffer.

Cursor initial position is 0 even if underlying buffer (e.g., Vec) is not empty. So writing to cursor starts with overwriting Vec content, not with appending to it.

§Examples
use std::io::Cursor;

let buff = Cursor::new(Vec::new());
1.0.0 · Source

pub fn into_inner(self) -> T

Consumes this cursor, returning the underlying value.

§Examples
use std::io::Cursor;

let buff = Cursor::new(Vec::new());

let vec = buff.into_inner();
1.0.0 (const: 1.79.0) · Source

pub const fn get_ref(&self) -> &T

Gets a reference to the underlying value in this cursor.

§Examples
use std::io::Cursor;

let buff = Cursor::new(Vec::new());

let reference = buff.get_ref();
1.0.0 (const: 1.86.0) · Source

pub const fn get_mut(&mut self) -> &mut T

Gets a mutable reference to the underlying value in this cursor.

Care should be taken to avoid modifying the internal I/O state of the underlying value as it may corrupt this cursor’s position.

§Examples
use std::io::Cursor;

let mut buff = Cursor::new(Vec::new());

let reference = buff.get_mut();
1.0.0 (const: 1.79.0) · Source

pub const fn position(&self) -> u64

Returns the current position of this cursor.

§Examples
use std::io::Cursor;
use std::io::prelude::*;
use std::io::SeekFrom;

let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);

assert_eq!(buff.position(), 0);

buff.seek(SeekFrom::Current(2)).unwrap();
assert_eq!(buff.position(), 2);

buff.seek(SeekFrom::Current(-1)).unwrap();
assert_eq!(buff.position(), 1);
1.0.0 (const: 1.86.0) · Source

pub const fn set_position(&mut self, pos: u64)

Sets the position of this cursor.

§Examples
use std::io::Cursor;

let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);

assert_eq!(buff.position(), 0);

buff.set_position(2);
assert_eq!(buff.position(), 2);

buff.set_position(4);
assert_eq!(buff.position(), 4);
Source§

impl<T> Cursor<T>
where T: AsRef<[u8]>,

Source

pub fn split(&self) -> (&[u8], &[u8])

🔬This is a nightly-only experimental API. (cursor_split)

Splits the underlying slice at the cursor position and returns them.

§Examples
#![feature(cursor_split)]
use std::io::Cursor;

let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);

assert_eq!(buff.split(), ([].as_slice(), [1, 2, 3, 4, 5].as_slice()));

buff.set_position(2);
assert_eq!(buff.split(), ([1, 2].as_slice(), [3, 4, 5].as_slice()));

buff.set_position(6);
assert_eq!(buff.split(), ([1, 2, 3, 4, 5].as_slice(), [].as_slice()));
Source§

impl<T> Cursor<T>
where T: AsMut<[u8]>,

Source

pub fn split_mut(&mut self) -> (&mut [u8], &mut [u8])

🔬This is a nightly-only experimental API. (cursor_split)

Splits the underlying slice at the cursor position and returns them mutably.

§Examples
#![feature(cursor_split)]
use std::io::Cursor;

let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);

assert_eq!(buff.split_mut(), ([].as_mut_slice(), [1, 2, 3, 4, 5].as_mut_slice()));

buff.set_position(2);
assert_eq!(buff.split_mut(), ([1, 2].as_mut_slice(), [3, 4, 5].as_mut_slice()));

buff.set_position(6);
assert_eq!(buff.split_mut(), ([1, 2, 3, 4, 5].as_mut_slice(), [].as_mut_slice()));

Trait Implementations§

1.0.0 · Source§

impl<T> BufRead for Cursor<T>
where T: AsRef<[u8]>,

Source§

fn fill_buf(&mut self) -> Result<&[u8], Error>

Returns the contents of the internal buffer, filling it with more data, via Read methods, if empty. Read more
Source§

fn consume(&mut self, amt: usize)

Marks the given amount of additional bytes from the internal buffer as having been read. Subsequent calls to read only return bytes that have not been marked as read. Read more
Source§

fn has_data_left(&mut self) -> Result<bool, Error>

🔬This is a nightly-only experimental API. (buf_read_has_data_left)
Checks if there is any data left to be read. Read more
1.0.0 · Source§

fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes into buf until the delimiter byte or EOF is reached. Read more
1.83.0 · Source§

fn skip_until(&mut self, byte: u8) -> Result<usize, Error>

Skips all bytes until the delimiter byte or EOF is reached. Read more
1.0.0 · Source§

fn read_line(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until a newline (the 0xA byte) is reached, and append them to the provided String buffer. Read more
1.0.0 · Source§

fn split(self, byte: u8) -> Split<Self>
where Self: Sized,

Returns an iterator over the contents of this reader split on the byte byte. Read more
1.0.0 · Source§

fn lines(self) -> Lines<Self>
where Self: Sized,

Returns an iterator over the lines of this reader. Read more
1.0.0 · Source§

impl<T> Clone for Cursor<T>
where T: Clone,

Source§

fn clone(&self) -> Cursor<T>

Returns a duplicate of the value. Read more
Source§

fn clone_from(&mut self, other: &Cursor<T>)

Performs copy-assignment from source. Read more
1.0.0 · Source§

impl<T> Debug for Cursor<T>
where T: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<T> Default for Cursor<T>
where T: Default,

Source§

fn default() -> Cursor<T>

Returns the “default value” for a type. Read more
1.0.0 · Source§

impl<T> PartialEq for Cursor<T>
where T: PartialEq,

Source§

fn eq(&self, other: &Cursor<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 · Source§

impl<T> Read for Cursor<T>
where T: AsRef<[u8]>,

Source§

fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error>

Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more
Source§

fn read_buf(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Pull some bytes from this source into the specified buffer. Read more
Source§

fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize, Error>

Like read, except that it reads into a slice of buffers. Read more
Source§

fn is_read_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Reader has an efficient read_vectored implementation. Read more
Source§

fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>

Reads the exact number of bytes required to fill buf. Read more
Source§

fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Reads the exact number of bytes required to fill cursor. Read more
Source§

fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes until EOF in this source, placing them into buf. Read more
Source§

fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until EOF in this source, appending them to buf. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adaptor for this instance of Read. Read more
1.0.0 · Source§

fn bytes(self) -> Bytes<Self>
where Self: Sized,

Transforms this Read instance to an Iterator over its bytes. Read more
1.0.0 · Source§

fn chain<R>(self, next: R) -> Chain<Self, R>
where R: Read, Self: Sized,

Creates an adapter which will chain this stream with another. Read more
1.0.0 · Source§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an adapter which will read at most limit bytes from it. Read more
1.0.0 · Source§

impl<T> Seek for Cursor<T>
where T: AsRef<[u8]>,

Source§

fn seek(&mut self, style: SeekFrom) -> Result<u64, Error>

Seek to an offset, in bytes, in a stream. Read more
Source§

fn stream_len(&mut self) -> Result<u64, Error>

🔬This is a nightly-only experimental API. (seek_stream_len)
Returns the length of this stream (in bytes). Read more
Source§

fn stream_position(&mut self) -> Result<u64, Error>

Returns the current seek position from the start of the stream. Read more
1.55.0 · Source§

fn rewind(&mut self) -> Result<(), Error>

Rewind to the beginning of a stream. Read more
1.80.0 · Source§

fn seek_relative(&mut self, offset: i64) -> Result<(), Error>

Seeks relative to the current position. Read more
1.0.0 · Source§

impl Write for Cursor<&mut [u8]>

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.0.0 · Source§

fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
1.25.0 · Source§

impl<A> Write for Cursor<&mut Vec<u8, A>>
where A: Allocator,

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.0.0 · Source§

fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
1.61.0 · Source§

impl<const N: usize> Write for Cursor<[u8; N]>

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.0.0 · Source§

fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
1.5.0 · Source§

impl<A> Write for Cursor<Box<[u8], A>>
where A: Allocator,

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.0.0 · Source§

fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
1.0.0 · Source§

impl<A> Write for Cursor<Vec<u8, A>>
where A: Allocator,

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.0.0 · Source§

fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
1.0.0 · Source§

impl<T> Eq for Cursor<T>
where T: Eq,

1.0.0 · Source§

impl<T> StructuralPartialEq for Cursor<T>

Auto Trait Implementations§

§

impl<T> Freeze for Cursor<T>
where T: Freeze,

§

impl<T> RefUnwindSafe for Cursor<T>
where T: RefUnwindSafe,

§

impl<T> Send for Cursor<T>
where T: Send,

§

impl<T> Sync for Cursor<T>
where T: Sync,

§

impl<T> Unpin for Cursor<T>
where T: Unpin,

§

impl<T> UnwindSafe for Cursor<T>
where T: UnwindSafe,

Blanket Implementations§

Source§

impl<T> AggregateExpressionMethods for T

Source§

fn aggregate_distinct(self) -> Self::Output
where Self: DistinctDsl,

DISTINCT modifier for aggregate functions Read more
Source§

fn aggregate_all(self) -> Self::Output
where Self: AllDsl,

ALL modifier for aggregate functions Read more
Source§

fn aggregate_filter<P>(self, f: P) -> Self::Output
where P: AsExpression<Bool>, Self: FilterDsl<<P as AsExpression<Bool>>::Expression>,

Add an aggregate function filter Read more
Source§

fn aggregate_order<O>(self, o: O) -> Self::Output
where Self: OrderAggregateDsl<O>,

Add an aggregate function order Read more
Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_sync(self: Box<T>) -> Box<dyn Any + Sync + Send>

Converts Box<Trait> (where Trait: DowncastSync) to Box<dyn Any + Send + Sync>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Converts Arc<Trait> (where Trait: DowncastSync) to Arc<Any>, which can then be downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<T> ExecutableCommand for T
where T: Write + ?Sized,

Source§

fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

§Arguments
  • Command

    The command that you want to execute directly.

§Example
use std::io;
use crossterm::{ExecutableCommand, style::Print};

fn main() -> io::Result<()> {
     // will be executed directly
      io::stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> IntoSql for T

Source§

fn into_sql<T>(self) -> Self::Expression

Convert self to an expression for Diesel’s query builder. Read more
Source§

fn as_sql<'a, T>(&'a self) -> <&'a Self as AsExpression<T>>::Expression
where &'a Self: AsExpression<T>, T: SqlType + TypedExpressionType,

Convert &self to an expression for Diesel’s query builder. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> QueueableCommand for T
where T: Write + ?Sized,

Source§

fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
§Arguments
  • Command

    The command that you want to queue for later execution.

§Examples
use std::io::{self, Write};
use crossterm::{QueueableCommand, style::Print};

 fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§

impl<R> ReadBytesExt for R
where R: Read + ?Sized,

Source§

fn read_u8(&mut self) -> Result<u8, Error>

Reads an unsigned 8 bit integer from the underlying reader. Read more
Source§

fn read_i8(&mut self) -> Result<i8, Error>

Reads a signed 8 bit integer from the underlying reader. Read more
Source§

fn read_u16<T>(&mut self) -> Result<u16, Error>
where T: ByteOrder,

Reads an unsigned 16 bit integer from the underlying reader. Read more
Source§

fn read_i16<T>(&mut self) -> Result<i16, Error>
where T: ByteOrder,

Reads a signed 16 bit integer from the underlying reader. Read more
Source§

fn read_u24<T>(&mut self) -> Result<u32, Error>
where T: ByteOrder,

Reads an unsigned 24 bit integer from the underlying reader. Read more
Source§

fn read_i24<T>(&mut self) -> Result<i32, Error>
where T: ByteOrder,

Reads a signed 24 bit integer from the underlying reader. Read more
Source§

fn read_u32<T>(&mut self) -> Result<u32, Error>
where T: ByteOrder,

Reads an unsigned 32 bit integer from the underlying reader. Read more
Source§

fn read_i32<T>(&mut self) -> Result<i32, Error>
where T: ByteOrder,

Reads a signed 32 bit integer from the underlying reader. Read more
Source§

fn read_u48<T>(&mut self) -> Result<u64, Error>
where T: ByteOrder,

Reads an unsigned 48 bit integer from the underlying reader. Read more
Source§

fn read_i48<T>(&mut self) -> Result<i64, Error>
where T: ByteOrder,

Reads a signed 48 bit integer from the underlying reader. Read more
Source§

fn read_u64<T>(&mut self) -> Result<u64, Error>
where T: ByteOrder,

Reads an unsigned 64 bit integer from the underlying reader. Read more
Source§

fn read_i64<T>(&mut self) -> Result<i64, Error>
where T: ByteOrder,

Reads a signed 64 bit integer from the underlying reader. Read more
Source§

fn read_u128<T>(&mut self) -> Result<u128, Error>
where T: ByteOrder,

Reads an unsigned 128 bit integer from the underlying reader. Read more
Source§

fn read_i128<T>(&mut self) -> Result<i128, Error>
where T: ByteOrder,

Reads a signed 128 bit integer from the underlying reader. Read more
Source§

fn read_uint<T>(&mut self, nbytes: usize) -> Result<u64, Error>
where T: ByteOrder,

Reads an unsigned n-bytes integer from the underlying reader. Read more
Source§

fn read_int<T>(&mut self, nbytes: usize) -> Result<i64, Error>
where T: ByteOrder,

Reads a signed n-bytes integer from the underlying reader. Read more
Source§

fn read_uint128<T>(&mut self, nbytes: usize) -> Result<u128, Error>
where T: ByteOrder,

Reads an unsigned n-bytes integer from the underlying reader.
Source§

fn read_int128<T>(&mut self, nbytes: usize) -> Result<i128, Error>
where T: ByteOrder,

Reads a signed n-bytes integer from the underlying reader.
Source§

fn read_f32<T>(&mut self) -> Result<f32, Error>
where T: ByteOrder,

Reads a IEEE754 single-precision (4 bytes) floating point number from the underlying reader. Read more
Source§

fn read_f64<T>(&mut self) -> Result<f64, Error>
where T: ByteOrder,

Reads a IEEE754 double-precision (8 bytes) floating point number from the underlying reader. Read more
Source§

fn read_u16_into<T>(&mut self, dst: &mut [u16]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 16 bit integers from the underlying reader. Read more
Source§

fn read_u32_into<T>(&mut self, dst: &mut [u32]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 32 bit integers from the underlying reader. Read more
Source§

fn read_u64_into<T>(&mut self, dst: &mut [u64]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 64 bit integers from the underlying reader. Read more
Source§

fn read_u128_into<T>(&mut self, dst: &mut [u128]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of unsigned 128 bit integers from the underlying reader. Read more
Source§

fn read_i8_into(&mut self, dst: &mut [i8]) -> Result<(), Error>

Reads a sequence of signed 8 bit integers from the underlying reader. Read more
Source§

fn read_i16_into<T>(&mut self, dst: &mut [i16]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 16 bit integers from the underlying reader. Read more
Source§

fn read_i32_into<T>(&mut self, dst: &mut [i32]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 32 bit integers from the underlying reader. Read more
Source§

fn read_i64_into<T>(&mut self, dst: &mut [i64]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 64 bit integers from the underlying reader. Read more
Source§

fn read_i128_into<T>(&mut self, dst: &mut [i128]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of signed 128 bit integers from the underlying reader. Read more
Source§

fn read_f32_into<T>(&mut self, dst: &mut [f32]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of IEEE754 single-precision (4 bytes) floating point numbers from the underlying reader. Read more
Source§

fn read_f32_into_unchecked<T>(&mut self, dst: &mut [f32]) -> Result<(), Error>
where T: ByteOrder,

👎Deprecated since 1.2.0: please use read_f32_into instead
DEPRECATED. Read more
Source§

fn read_f64_into<T>(&mut self, dst: &mut [f64]) -> Result<(), Error>
where T: ByteOrder,

Reads a sequence of IEEE754 double-precision (8 bytes) floating point numbers from the underlying reader. Read more
Source§

fn read_f64_into_unchecked<T>(&mut self, dst: &mut [f64]) -> Result<(), Error>
where T: ByteOrder,

👎Deprecated since 1.2.0: please use read_f64_into instead
DEPRECATED. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<W> SynchronizedUpdate for W
where W: Write + ?Sized,

Source§

fn sync_update<T>( &mut self, operations: impl FnOnce(&mut W) -> T, ) -> Result<T, Error>

Performs a set of actions within a synchronous update.

Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.

§Arguments
  • Function

    A function that performs the operations that must execute in a synchronized update.

§Examples
use std::io;
use crossterm::{ExecutableCommand, SynchronizedUpdate, style::Print};

fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    stdout.sync_update(|stdout| {
        stdout.execute(Print("foo 1\n".to_string()))?;
        stdout.execute(Print("foo 2".to_string()))?;
        // The effects of the print command will not be present in the terminal
        // buffer, but not visible in the terminal.
        std::io::Result::Ok(())
    })?;

    // The effects of the commands will be visible.

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}
§Notes

This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.

When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.

This mode attempts to mitigate that.

When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WindowExpressionMethods for T

Source§

fn over(self) -> Self::Output
where Self: OverDsl,

Turn a function call into a window function call Read more
Source§

fn window_filter<P>(self, f: P) -> Self::Output
where P: AsExpression<Bool>, Self: FilterDsl<<P as AsExpression<Bool>>::Expression>,

Add a filter to the current window function Read more
Source§

fn partition_by<E>(self, expr: E) -> Self::Output
where Self: PartitionByDsl<E>,

Add a partition clause to the current window function Read more
Source§

fn window_order<E>(self, expr: E) -> Self::Output
where Self: OrderWindowDsl<E>,

Add a order clause to the current window function Read more
Source§

fn frame_by<E>(self, expr: E) -> Self::Output
where Self: FrameDsl<E>,

Add a frame clause to the current window function Read more
Source§

impl<W> WriteBytesExt for W
where W: Write + ?Sized,

Source§

fn write_u8(&mut self, n: u8) -> Result<(), Error>

Writes an unsigned 8 bit integer to the underlying writer. Read more
Source§

fn write_i8(&mut self, n: i8) -> Result<(), Error>

Writes a signed 8 bit integer to the underlying writer. Read more
Source§

fn write_u16<T>(&mut self, n: u16) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 16 bit integer to the underlying writer. Read more
Source§

fn write_i16<T>(&mut self, n: i16) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 16 bit integer to the underlying writer. Read more
Source§

fn write_u24<T>(&mut self, n: u32) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 24 bit integer to the underlying writer. Read more
Source§

fn write_i24<T>(&mut self, n: i32) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 24 bit integer to the underlying writer. Read more
Source§

fn write_u32<T>(&mut self, n: u32) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 32 bit integer to the underlying writer. Read more
Source§

fn write_i32<T>(&mut self, n: i32) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 32 bit integer to the underlying writer. Read more
Source§

fn write_u48<T>(&mut self, n: u64) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 48 bit integer to the underlying writer. Read more
Source§

fn write_i48<T>(&mut self, n: i64) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 48 bit integer to the underlying writer. Read more
Source§

fn write_u64<T>(&mut self, n: u64) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 64 bit integer to the underlying writer. Read more
Source§

fn write_i64<T>(&mut self, n: i64) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 64 bit integer to the underlying writer. Read more
Source§

fn write_u128<T>(&mut self, n: u128) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned 128 bit integer to the underlying writer.
Source§

fn write_i128<T>(&mut self, n: i128) -> Result<(), Error>
where T: ByteOrder,

Writes a signed 128 bit integer to the underlying writer.
Source§

fn write_uint<T>(&mut self, n: u64, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned n-bytes integer to the underlying writer. Read more
Source§

fn write_int<T>(&mut self, n: i64, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes a signed n-bytes integer to the underlying writer. Read more
Source§

fn write_uint128<T>(&mut self, n: u128, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes an unsigned n-bytes integer to the underlying writer. Read more
Source§

fn write_int128<T>(&mut self, n: i128, nbytes: usize) -> Result<(), Error>
where T: ByteOrder,

Writes a signed n-bytes integer to the underlying writer. Read more
Source§

fn write_f32<T>(&mut self, n: f32) -> Result<(), Error>
where T: ByteOrder,

Writes a IEEE754 single-precision (4 bytes) floating point number to the underlying writer. Read more
Source§

fn write_f64<T>(&mut self, n: f64) -> Result<(), Error>
where T: ByteOrder,

Writes a IEEE754 double-precision (8 bytes) floating point number to the underlying writer. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,