statrs::distribution

Struct Binomial

Source
pub struct Binomial { /* private fields */ }
Expand description

Implements the Binomial distribution

§Examples

use statrs::distribution::{Binomial, Discrete};
use statrs::statistics::Distribution;

let n = Binomial::new(0.5, 5).unwrap();
assert_eq!(n.mean().unwrap(), 2.5);
assert_eq!(n.pmf(0), 0.03125);
assert_eq!(n.pmf(3), 0.3125);

Implementations§

Source§

impl Binomial

Source

pub fn new(p: f64, n: u64) -> Result<Binomial>

Constructs a new binomial distribution with a given p probability of success of n trials.

§Errors

Returns an error if p is NaN, less than 0.0, greater than 1.0, or if n is less than 0

§Examples
use statrs::distribution::Binomial;

let mut result = Binomial::new(0.5, 5);
assert!(result.is_ok());

result = Binomial::new(-0.5, 5);
assert!(result.is_err());
Source

pub fn p(&self) -> f64

Returns the probability of success p of the binomial distribution.

§Examples
use statrs::distribution::Binomial;

let n = Binomial::new(0.5, 5).unwrap();
assert_eq!(n.p(), 0.5);
Source

pub fn n(&self) -> u64

Returns the number of trials n of the binomial distribution.

§Examples
use statrs::distribution::Binomial;

let n = Binomial::new(0.5, 5).unwrap();
assert_eq!(n.n(), 5);

Trait Implementations§

Source§

impl Clone for Binomial

Source§

fn clone(&self) -> Binomial

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Binomial

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Discrete<u64, f64> for Binomial

Source§

fn pmf(&self, x: u64) -> f64

Calculates the probability mass function for the binomial distribution at x

§Formula
(n choose k) * p^k * (1 - p)^(n - k)
Source§

fn ln_pmf(&self, x: u64) -> f64

Calculates the log probability mass function for the binomial distribution at x

§Formula
ln((n choose k) * p^k * (1 - p)^(n - k))
Source§

impl DiscreteCDF<u64, f64> for Binomial

Source§

fn cdf(&self, x: u64) -> f64

Calculates the cumulative distribution function for the binomial distribution at x

§Formula
I_(1 - p)(n - x, 1 + x)

where I_(x)(a, b) is the regularized incomplete beta function

Source§

fn sf(&self, x: u64) -> f64

Calculates the survival function for the binomial distribution at x

§Formula
I_(p)(x + 1, n - x)

where I_(x)(a, b) is the regularized incomplete beta function

Source§

fn inverse_cdf(&self, p: T) -> K

Due to issues with rounding and floating-point accuracy the default implementation may be ill-behaved Specialized inverse cdfs should be used whenever possible. Read more
Source§

impl Distribution<f64> for Binomial

Source§

fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64

Generate a random value of T, using rng as the source of randomness.
Source§

fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
where R: Rng, Self: Sized,

Create an iterator that generates random values of T, using rng as the source of randomness. Read more
Source§

fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
where F: Fn(T) -> S, Self: Sized,

Create a distribution of values of ‘S’ by mapping the output of Self through the closure F Read more
Source§

impl Distribution<f64> for Binomial

Source§

fn mean(&self) -> Option<f64>

Returns the mean of the binomial distribution

§Formula
p * n
Source§

fn variance(&self) -> Option<f64>

Returns the variance of the binomial distribution

§Formula
n * p * (1 - p)
Source§

fn entropy(&self) -> Option<f64>

Returns the entropy of the binomial distribution

§Formula
(1 / 2) * ln (2 * π * e * n * p * (1 - p))
Source§

fn skewness(&self) -> Option<f64>

Returns the skewness of the binomial distribution

§Formula
(1 - 2p) / sqrt(n * p * (1 - p)))
Source§

fn std_dev(&self) -> Option<T>

Returns the standard deviation, if it exists. Read more
Source§

impl Max<u64> for Binomial

Source§

fn max(&self) -> u64

Returns the maximum value in the domain of the binomial distribution representable by a 64-bit integer

§Formula
Source§

impl Median<f64> for Binomial

Source§

fn median(&self) -> f64

Returns the median of the binomial distribution

§Formula
floor(n * p)
Source§

impl Min<u64> for Binomial

Source§

fn min(&self) -> u64

Returns the minimum value in the domain of the binomial distribution representable by a 64-bit integer

§Formula
Source§

impl Mode<Option<u64>> for Binomial

Source§

fn mode(&self) -> Option<u64>

Returns the mode for the binomial distribution

§Formula
floor((n + 1) * p)
Source§

impl PartialEq for Binomial

Source§

fn eq(&self, other: &Binomial) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for Binomial

Source§

impl StructuralPartialEq for Binomial

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,