cauchy

Type Alias c32

Source
pub type c32 = Complex<f32>;
Expand description

Alias for a Complex<f32>

Aliased Type§

struct c32 {
    pub re: f32,
    pub im: f32,
}

Fields§

§re: f32

Real portion of the complex number

§im: f32

Imaginary portion of the complex number

Trait Implementations§

Source§

impl Scalar for c32

Source§

type Real = f32

Source§

type Complex = Complex<f32>

Source§

fn re(&self) -> Self::Real

Real part
Source§

fn im(&self) -> Self::Real

Imaginary part
Source§

fn from_real(re: Self::Real) -> Self

Source§

fn pow(self, n: Self) -> Self

Source§

fn powi(self, n: i32) -> Self

Source§

fn powf(self, n: Self::Real) -> Self

Source§

fn powc(self, n: Self::Complex) -> Self::Complex

Source§

fn real<T: ToPrimitive>(re: T) -> Self::Real

Create a new real number
Source§

fn complex<T: ToPrimitive>(re: T, im: T) -> Self::Complex

Create a new complex number
Source§

fn as_c(&self) -> Self::Complex

As a complex number
Source§

fn conj(&self) -> Self

Complex conjugate
Source§

fn square(self) -> Self::Real

Sqaure of absolute value
Source§

fn abs(self) -> Self::Real

Absolute value
Source§

fn rand(rng: &mut impl Rng) -> Self

Generate an random number from rand::distributions::Standard
Source§

fn add_real(self, re: Self::Real) -> Self

Source§

fn sub_real(self, re: Self::Real) -> Self

Source§

fn mul_real(self, re: Self::Real) -> Self

Source§

fn div_real(self, re: Self::Real) -> Self

Source§

fn add_complex(self, im: Self::Complex) -> Self::Complex

Source§

fn sub_complex(self, im: Self::Complex) -> Self::Complex

Source§

fn mul_complex(self, im: Self::Complex) -> Self::Complex

Source§

fn div_complex(self, im: Self::Complex) -> Self::Complex

Source§

fn sqrt(self) -> Self

Source§

fn exp(self) -> Self

Source§

fn ln(self) -> Self

Source§

fn sin(self) -> Self

Source§

fn cos(self) -> Self

Source§

fn tan(self) -> Self

Source§

fn sinh(self) -> Self

Source§

fn cosh(self) -> Self

Source§

fn tanh(self) -> Self

Source§

fn asin(self) -> Self

Source§

fn acos(self) -> Self

Source§

fn atan(self) -> Self

Source§

fn asinh(self) -> Self

Source§

fn acosh(self) -> Self

Source§

fn atanh(self) -> Self