pub struct Weibull { /* private fields */ }
Expand description
Implements the Weibull distribution
§Examples
use statrs::distribution::{Weibull, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = Weibull::new(10.0, 1.0).unwrap();
assert!(prec::almost_eq(n.mean().unwrap(),
0.95135076986687318362924871772654021925505786260884, 1e-15));
assert_eq!(n.pdf(1.0), 3.6787944117144232159552377016146086744581113103177);
Implementations§
Source§impl Weibull
impl Weibull
Sourcepub fn new(shape: f64, scale: f64) -> Result<Weibull, WeibullError>
pub fn new(shape: f64, scale: f64) -> Result<Weibull, WeibullError>
Constructs a new weibull distribution with a shape (k) of shape
and a scale (λ) of scale
§Errors
Returns an error if shape
or scale
are NaN
.
Returns an error if shape <= 0.0
or scale <= 0.0
§Examples
use statrs::distribution::Weibull;
let mut result = Weibull::new(10.0, 1.0);
assert!(result.is_ok());
result = Weibull::new(0.0, 0.0);
assert!(result.is_err());
Trait Implementations§
Source§impl Continuous<f64, f64> for Weibull
impl Continuous<f64, f64> for Weibull
Source§impl ContinuousCDF<f64, f64> for Weibull
impl ContinuousCDF<f64, f64> for Weibull
Source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the weibull
distribution at x
§Formula
1 - e^-((x/λ)^k)
where k
is the shape and λ
is the scale
Source§impl Distribution<f64> for Weibull
impl Distribution<f64> for Weibull
Source§impl Distribution<f64> for Weibull
impl Distribution<f64> for Weibull
Source§fn mean(&self) -> Option<f64>
fn mean(&self) -> Option<f64>
Returns the mean of the weibull distribution
§Formula
λΓ(1 + 1 / k)
where k
is the shape, λ
is the scale, and Γ
is
the gamma function
Source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the weibull distribution
§Formula
λ^2 * (Γ(1 + 2 / k) - Γ(1 + 1 / k)^2)
where k
is the shape, λ
is the scale, and Γ
is
the gamma function
Source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy of the weibull distribution
§Formula
γ(1 - 1 / k) + ln(λ / k) + 1
where k
is the shape, λ
is the scale, and γ
is
the Euler-Mascheroni constant
impl Copy for Weibull
impl StructuralPartialEq for Weibull
Auto Trait Implementations§
impl Freeze for Weibull
impl RefUnwindSafe for Weibull
impl Send for Weibull
impl Sync for Weibull
impl Unpin for Weibull
impl UnwindSafe for Weibull
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.