pub struct Normal { /* private fields */ }
Expand description
Implementations§
Source§impl Normal
impl Normal
Sourcepub fn new(mean: f64, std_dev: f64) -> Result<Normal, NormalError>
pub fn new(mean: f64, std_dev: f64) -> Result<Normal, NormalError>
Constructs a new normal distribution with a mean of mean
and a standard deviation of std_dev
§Errors
Returns an error if mean
or std_dev
are NaN
or if
std_dev <= 0.0
§Examples
use statrs::distribution::Normal;
let mut result = Normal::new(0.0, 1.0);
assert!(result.is_ok());
result = Normal::new(0.0, 0.0);
assert!(result.is_err());
Trait Implementations§
Source§impl Continuous<f64, f64> for Normal
impl Continuous<f64, f64> for Normal
Source§impl ContinuousCDF<f64, f64> for Normal
impl ContinuousCDF<f64, f64> for Normal
Source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the
normal distribution at x
§Formula
(1 / 2) * (1 + erf((x - μ) / (σ * sqrt(2))))
where μ
is the mean, σ
is the standard deviation, and
erf
is the error function
Source§fn sf(&self, x: f64) -> f64
fn sf(&self, x: f64) -> f64
Calculates the survival function for the
normal distribution at x
§Formula
(1 / 2) * (1 + erf(-(x - μ) / (σ * sqrt(2))))
where μ
is the mean, σ
is the standard deviation, and
erf
is the error function
note that this calculates the complement due to flipping the sign of the argument error function with respect to the cdf.
the normal cdf Φ (and internal error function) as the following property:
Φ(-x) + Φ(x) = 1
Φ(-x) = 1 - Φ(x)
Source§fn inverse_cdf(&self, x: f64) -> f64
fn inverse_cdf(&self, x: f64) -> f64
Calculates the inverse cumulative distribution function for the
normal distribution at x
.
In other languages, such as R, this is known as the the quantile function.
§Panics
If x < 0.0
or x > 1.0
§Formula
μ - sqrt(2) * σ * erfc_inv(2x)
where μ
is the mean, σ
is the standard deviation and erfc_inv
is
the inverse of the complementary error function
Source§impl Distribution<f64> for Normal
impl Distribution<f64> for Normal
Source§impl Distribution<f64> for Normal
impl Distribution<f64> for Normal
Source§fn mean(&self) -> Option<f64>
fn mean(&self) -> Option<f64>
Returns the mean of the normal distribution
§Remarks
This is the same mean used to construct the distribution
Source§fn std_dev(&self) -> Option<f64>
fn std_dev(&self) -> Option<f64>
Returns the standard deviation of the normal distribution
§Remarks
This is the same standard deviation used to construct the distribution
impl Copy for Normal
impl StructuralPartialEq for Normal
Auto Trait Implementations§
impl Freeze for Normal
impl RefUnwindSafe for Normal
impl Send for Normal
impl Sync for Normal
impl Unpin for Normal
impl UnwindSafe for Normal
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.