pub struct LogNormal { /* private fields */ }
Expand description
Implements the Log-normal distribution
§Examples
use statrs::distribution::{LogNormal, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = LogNormal::new(0.0, 1.0).unwrap();
assert_eq!(n.mean().unwrap(), (0.5f64).exp());
assert!(prec::almost_eq(n.pdf(1.0), 0.3989422804014326779399, 1e-16));
Implementations§
Source§impl LogNormal
impl LogNormal
Sourcepub fn new(location: f64, scale: f64) -> Result<LogNormal, LogNormalError>
pub fn new(location: f64, scale: f64) -> Result<LogNormal, LogNormalError>
Constructs a new log-normal distribution with a location of location
and a scale of scale
§Errors
Returns an error if location
or scale
are NaN
.
Returns an error if scale <= 0.0
§Examples
use statrs::distribution::LogNormal;
let mut result = LogNormal::new(0.0, 1.0);
assert!(result.is_ok());
result = LogNormal::new(0.0, 0.0);
assert!(result.is_err());
Trait Implementations§
Source§impl Continuous<f64, f64> for LogNormal
impl Continuous<f64, f64> for LogNormal
Source§impl ContinuousCDF<f64, f64> for LogNormal
impl ContinuousCDF<f64, f64> for LogNormal
Source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the log-normal
distribution
at x
§Formula
(1 / 2) + (1 / 2) * erf((ln(x) - μ) / sqrt(2) * σ)
where μ
is the location, σ
is the scale, and erf
is the
error function
Source§fn sf(&self, x: f64) -> f64
fn sf(&self, x: f64) -> f64
Calculates the survival function for the log-normal
distribution at x
§Formula
(1 / 2) + (1 / 2) * erf(-(ln(x) - μ) / sqrt(2) * σ)
where μ
is the location, σ
is the scale, and erf
is the
error function
note that this calculates the complement due to flipping the sign of the argument error function with respect to the cdf.
the normal cdf Φ (and internal error function) as the following property:
Φ(-x) + Φ(x) = 1
Φ(-x) = 1 - Φ(x)
Source§fn inverse_cdf(&self, p: f64) -> f64
fn inverse_cdf(&self, p: f64) -> f64
Source§impl Distribution<f64> for LogNormal
impl Distribution<f64> for LogNormal
Source§impl Distribution<f64> for LogNormal
impl Distribution<f64> for LogNormal
Source§fn mean(&self) -> Option<f64>
fn mean(&self) -> Option<f64>
Returns the mean of the log-normal distribution
§Formula
e^(μ + σ^2 / 2)
where μ
is the location and σ
is the scale
Source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the log-normal distribution
§Formula
(e^(σ^2) - 1) * e^(2μ + σ^2)
where μ
is the location and σ
is the scale
Source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy of the log-normal distribution
§Formula
ln(σe^(μ + 1 / 2) * sqrt(2π))
where μ
is the location and σ
is the scale
impl Copy for LogNormal
impl StructuralPartialEq for LogNormal
Auto Trait Implementations§
impl Freeze for LogNormal
impl RefUnwindSafe for LogNormal
impl Send for LogNormal
impl Sync for LogNormal
impl Unpin for LogNormal
impl UnwindSafe for LogNormal
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.