pub struct Beta { /* private fields */ }
Expand description
Implementations§
Source§impl Beta
impl Beta
Sourcepub fn new(shape_a: f64, shape_b: f64) -> Result<Beta, BetaError>
pub fn new(shape_a: f64, shape_b: f64) -> Result<Beta, BetaError>
Constructs a new beta distribution with shapeA (α) of shape_a
and shapeB (β) of shape_b
§Errors
Returns an error if shape_a
or shape_b
are NaN
or infinite.
Also returns an error if shape_a <= 0.0
or shape_b <= 0.0
§Examples
use statrs::distribution::Beta;
let mut result = Beta::new(2.0, 2.0);
assert!(result.is_ok());
result = Beta::new(0.0, 0.0);
assert!(result.is_err());
Trait Implementations§
Source§impl Continuous<f64, f64> for Beta
impl Continuous<f64, f64> for Beta
Source§impl ContinuousCDF<f64, f64> for Beta
impl ContinuousCDF<f64, f64> for Beta
Source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the beta
distribution at x
.
§Formula
I_x(α, β)
where α
is shapeA, β
is shapeB, and I_x
is the regularized
lower incomplete beta function.
Source§impl Distribution<f64> for Beta
impl Distribution<f64> for Beta
Source§impl Distribution<f64> for Beta
impl Distribution<f64> for Beta
Source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the beta distribution.
§Formula
(α * β) / ((α + β)^2 * (α + β + 1))
where α
is shapeA and β
is shapeB.
Source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy of the beta distribution.
§Formula
ln(B(α, β)) - (α - 1)ψ(α) - (β - 1)ψ(β) + (α + β - 2)ψ(α + β)
where α
is shapeA, β
is shapeB and ψ
is the digamma function.
Source§impl Mode<Option<f64>> for Beta
impl Mode<Option<f64>> for Beta
Source§fn mode(&self) -> Option<f64>
fn mode(&self) -> Option<f64>
Returns the mode of the Beta distribution. Returns None
if α <= 1
or β <= 1
.
§Remarks
Since the mode is technically only calculated for α > 1, β > 1
, those
are the only values we allow. We may consider relaxing this constraint
in the future.
§Formula
(α - 1) / (α + β - 2)
where α
is shapeA and β
is shapeB
impl Copy for Beta
impl StructuralPartialEq for Beta
Auto Trait Implementations§
impl Freeze for Beta
impl RefUnwindSafe for Beta
impl Send for Beta
impl Sync for Beta
impl Unpin for Beta
impl UnwindSafe for Beta
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.