tof_dataclasses/events/tof_hit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
use std::fmt;
use half::f16;
use crate::errors::SerializationError;
use crate::serialization::{
parse_u8,
parse_u16,
parse_f16,
Serialization
};
use crate::ProtocolVersion;
use crate::constants::{
C_LIGHT_PADDLE,
C_LIGHT_CABLE
};
#[cfg(feature="random")]
use rand::Rng;
#[cfg(feature="database")]
use crate::database::Paddle;
///// We will save the values for the peak heigth, time and charge
///// as u16. The calculations yield f32 though. We need to convert
///// them using MIN/MAX and a range
//const MAX_PEAK_HEIGHT : f32 = 150.0; //mV
////const MIN_PEAK_HEIGHT : f32 = 0.0;
//const U16TOF32_PEAK_HEIGHT : f32 = MAX_PEAK_HEIGHT/(u16::MAX as f32);
//const F32TOU16_PEAK_HEIGHT : u16 = ((u16::MAX as f32)/MAX_PEAK_HEIGHT) as u16;
//const MAX_PEAK_CHARGE : f32 = 100.0;
////const MIN_PEAK_CHARGE : f32 = 0.0;
//const U16TOF32_PEAK_CHARGE : f32 = MAX_PEAK_CHARGE/(u16::MAX as f32);
//const F32TOU16_PEAK_CHARGE : u16 = ((u16::MAX as f32)/MAX_PEAK_CHARGE) as u16;
//const MAX_PEAK_TIME : f32 = 500.0;
////const MIN_PEAK_TIME : f32 = 0.0;
//const U16TOF32_PEAK_TIME : f32 = MAX_PEAK_TIME/(u16::MAX as f32);
//const F32TOU16_PEAK_TIME : u16 = ((u16::MAX as f32)/MAX_PEAK_TIME) as u16;
//const U16TOF32_T0 : f32 = MAX_PEAK_TIME/(u16::MAX as f32);
//const F32TOU16_T0 : u16 = ((u16::MAX as f32)/MAX_PEAK_TIME) as u16;
//const U16TOF32_POS_ACROSS : f32 = 1800.0/(u16::MAX as f32);
//const F32TOU16_POS_ACROSS : u16 = ((u16::MAX as f32)/1800.0) as u16;
//const U16TOF32_EDEP : f32 = 180.0/(u16::MAX as f32);
//const F32TOU16_EDEP : u16 = ((u16::MAX as f32)/100.0) as u16;
/// Waveform peak
///
/// Helper to form TofHits
#[derive(Debug,Copy,Clone,PartialEq)]
pub struct Peak {
pub paddle_end_id : u16,
pub time : f32,
pub charge : f32,
pub height : f32
}
impl Peak {
pub fn new() -> Self {
Self {
paddle_end_id : 40,
time : 0.0,
charge : 0.0,
height : 0.0,
}
}
}
impl Default for Peak {
fn default() -> Self {
Self::new()
}
}
impl fmt::Display for Peak {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "<Peak:
p_end_id : {}
time : {}
charge : {}
height : {}>",
self.paddle_end_id,
self.time,
self.charge,
self.height)
}
}
/// Comprehensive paddle information
///
/// Results of the (online) waveform analysis
///
/// A and B are the different ends of the paddle
///
#[derive(Debug,Copy,Clone,PartialEq)]
pub struct TofHit {
/// The ID of the paddle in TOF notation
/// (1-160)
pub paddle_id : u8,
pub time_a : f16,
pub time_b : f16,
pub peak_a : f16,
pub peak_b : f16,
pub charge_a : f16,
pub charge_b : f16,
/// The paddle length will not get serialized
/// and has to be set after the hit has been
/// created
pub paddle_len : f32,
/// The Harting cable length to the RB will not get
/// serialized and has to be set after the hit has been
/// created
pub cable_len : f32,
// deprecated values (prior to V1 version)
pub timestamp32 : u32,
pub timestamp16 : u16,
pub ctr_etx : u8,
pub charge_min_i : u16,
/// Reconstructed particle interaction position
/// across the paddle
pub pos_across : u16,
/// Reconstructed particle interaction time
pub t0 : u16,
// new values
pub reserved : u8,
// only 2 bytes of version
// are used
pub version : ProtocolVersion,
// for now, but we want to use half instead
pub baseline_a : f16,
pub baseline_a_rms : f16,
pub baseline_b : f16,
pub baseline_b_rms : f16,
// phase of the sine fit
pub phase : f16,
// fields which won't get
// serialized
pub valid : bool,
// for debugging purposes
pub ftime_a : f32,
pub ftime_b : f32,
pub fpeak_a : f32,
pub fpeak_b : f32,
}
impl Default for TofHit {
fn default() -> Self {
Self::new()
}
}
impl fmt::Display for TofHit {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut paddle_info = String::from("");
if self.paddle_len == 0.0 {
paddle_info = String::from("NOT SET!");
}
write!(f, "<TofHit (version : {}):
Paddle ID {}
Peak:
LE Time A/B {:.2} {:.2}
Height A/B {:.2} {:.2}
Charge A/B {:.2} {:.2}
** paddle {} **
Length {:.2}
Harting cable length {:.2}
** reconstructed interaction
energy_dep {:.2}
pos_across {:.2}
t0 {:.2}
** V1 variables
phase (ch9) {:.4}
baseline A/B {:.2} {:.2}
bl. RMS A/B {:.2} {:.2}>",
self.version,
self.paddle_id,
self.get_time_a(),
self.get_time_b(),
self.get_peak_a(),
self.get_peak_b(),
self.get_charge_a(),
self.get_charge_b(),
paddle_info,
self.paddle_len,
self.cable_len,
self.get_edep(),
self.get_pos(),
self.get_t0(),
self.phase,
self.baseline_a,
self.baseline_b,
self.baseline_a_rms,
self.baseline_b_rms,
)
}
}
impl Serialization for TofHit {
const HEAD : u16 = 61680; //0xF0F0)
const TAIL : u16 = 3855;
const SIZE : usize = 30; // size in bytes with HEAD and TAIL
/// Serialize the packet
///
/// Not all fields will get serialized,
/// only the relevant data for the
/// flight computer
//
/// **A note about protocol versions **
/// When we serialize (to_bytestream) we will
/// always write the latest version.
/// Deserialization can also read previous versions
fn to_bytestream(&self) -> Vec<u8> {
let mut bytestream = Vec::<u8>::with_capacity(Self::SIZE);
bytestream.extend_from_slice(&Self::HEAD.to_le_bytes());
bytestream.push(self.paddle_id);
bytestream.extend_from_slice(&self.time_a .to_le_bytes());
bytestream.extend_from_slice(&self.time_b .to_le_bytes());
bytestream.extend_from_slice(&self.peak_a .to_le_bytes());
bytestream.extend_from_slice(&self.peak_b .to_le_bytes());
bytestream.extend_from_slice(&self.charge_a .to_le_bytes());
bytestream.extend_from_slice(&self.charge_b .to_le_bytes());
bytestream.extend_from_slice(&self.charge_min_i.to_le_bytes());
//bytestream.extend_from_slice(&self.pos_across .to_le_bytes());
//bytestream.extend_from_slice(&self.t0 .to_le_bytes());
bytestream.extend_from_slice(&self.baseline_a .to_le_bytes());
bytestream.extend_from_slice(&self.baseline_a_rms.to_le_bytes());
// instead of ctr_etx and reserved, we now have phase in V1
bytestream.extend_from_slice(&self.phase .to_le_bytes());
//bytestream.push(self.ctr_etx);
//bytestream.extend_from_slice(&self.timestamp32 .to_le_bytes());
//bytestream.extend_from_slice(&self.timestamp16 .to_le_bytes());
//bytestream.push(self.reserved);
bytestream.push(self.version.to_u8());
bytestream.extend_from_slice(&self.baseline_b.to_le_bytes());
bytestream.extend_from_slice(&self.baseline_b_rms.to_le_bytes());
bytestream.extend_from_slice(&Self::TAIL .to_le_bytes());
bytestream
}
/// Deserialization
///
///
/// # Arguments:
///
/// * bytestream :
fn from_bytestream(stream : &Vec<u8>, pos : &mut usize)
-> Result<Self, SerializationError> {
let mut pp = Self::new();
Self::verify_fixed(stream, pos)?;
// since we passed the above test, the packet
// is valid
pp.valid = true;
pp.paddle_id = parse_u8(stream, pos);
pp.time_a = parse_f16(stream, pos);
pp.time_b = parse_f16(stream, pos);
pp.peak_a = parse_f16(stream, pos);
pp.peak_b = parse_f16(stream, pos);
pp.charge_a = parse_f16(stream, pos);
pp.charge_b = parse_f16(stream, pos);
pp.charge_min_i = parse_u16(stream, pos);
pp.baseline_a = parse_f16(stream, pos);
pp.baseline_a_rms = parse_f16(stream, pos);
//pp.time_a = parse_u16(stream, pos);
//pp.time_b = parse_u16(stream, pos);
//pp.peak_a = parse_u16(stream, pos);
//pp.peak_b = parse_u16(stream, pos);
//pp.charge_a = parse_u16(stream, pos);
//pp.charge_b = parse_u16(stream, pos);
//pp.charge_min_i = parse_u16(stream, pos);
//pp.pos_across = parse_u16(stream, pos);
//pp.t0 = parse_u16(stream, pos);
let mut phase_vec = Vec::<u8>::new();
phase_vec.push(parse_u8(stream, pos));
phase_vec.push(parse_u8(stream, pos));
pp.phase = parse_f16(&phase_vec, &mut 0);
//pp.ctr_etx = parse_u8(stream, pos);
//pp.reserved = parse_u8(stream, pos);
let version = ProtocolVersion::from(parse_u8(stream, pos));
pp.version = version;
match pp.version {
ProtocolVersion::V1 => {
// in this version we do have phase instead of
// ctr_etx and reserved
//let mut phase_vec = Vec::<u8>::new();
//phase_vec.push(pp.ctr_etx);
//phase_vec.push(pp.reserved);
//pp.phase = parse_f16(&phase_vec, &mut 0);
}
_ => ()
}
pp.baseline_b = parse_f16(stream, pos);
pp.baseline_b_rms = parse_f16(stream, pos);
//pp.timestamp32 = parse_u32(stream, pos);
//pp.timestamp16 = parse_u16(stream, pos);
*pos += 2; // always have to do this when using verify fixed
Ok(pp)
}
}
impl TofHit {
pub fn new() -> Self {
Self{
paddle_id : 0,
time_a : f16::from_f32(0.0),
time_b : f16::from_f32(0.0),
peak_a : f16::from_f32(0.0),
peak_b : f16::from_f32(0.0),
charge_a : f16::from_f32(0.0),
charge_b : f16::from_f32(0.0),
paddle_len : 0.0,
cable_len : 0.0,
charge_min_i : 0,
// deprecated
pos_across : 0,
t0 : 0,
ctr_etx : 0,
timestamp32 : 0,
timestamp16 : 0,
valid : true,
// v1 variables
version : ProtocolVersion::V1,
reserved : 0,
baseline_a : f16::from_f32(0.0),
baseline_a_rms : f16::from_f32(0.0),
baseline_b : f16::from_f32(0.0),
baseline_b_rms : f16::from_f32(0.0),
phase : f16::from_f32(0.0),
// non-serialize fields
ftime_a : 0.0,
ftime_b : 0.0,
fpeak_a : 0.0,
fpeak_b : 0.0,
}
}
#[cfg(feature="database")]
pub fn set_paddle(&mut self, paddle : &Paddle) {
self.cable_len = paddle.cable_len;
self.paddle_len = paddle.length * 10.0; // stupid units!
}
/// Get the (official) paddle id
///
/// Convert the paddle end id following
/// the convention
///
/// A-side : paddle id + 1000
/// B-side : paddle id + 2000
///
/// FIXME - maybe return Result?
pub fn get_pid(paddle_end_id : u16) -> u8 {
if paddle_end_id < 1000 {
return 0;
}
if paddle_end_id > 2000 {
return (paddle_end_id - 2000) as u8;
}
if paddle_end_id < 2000 {
return (paddle_end_id - 1000) as u8;
}
return 0;
}
pub fn add_peak(&mut self, peak : &Peak) {
if self.paddle_id != TofHit::get_pid(peak.paddle_end_id) {
//error!("Can't add peak to
}
if peak.paddle_end_id < 1000 {
error!("Invalide paddle end id {}", peak.paddle_end_id);
}
if peak.paddle_end_id > 2000 {
self.set_time_b (peak.time);
self.set_peak_b (peak.height);
self.set_charge_b(peak.charge);
} else if peak.paddle_end_id < 2000 {
self.set_time_a (peak.time);
self.set_peak_a (peak.height);
self.set_charge_a(peak.charge);
}
}
// rework the whole getter/setter cluster, since
// we switched to f16 instead of our custom
// conversion
/// Calculate the position across the paddle from
/// the two times at the paddle ends
///
/// **This will be measured from the A side**
pub fn get_pos(&self) -> f32 {
//(self.time_a.to_f32() - self.get_t0())*C_LIGHT_PADDLE*10.0 // 10 for cm->mm
// FIX - we are actually resetting the particle interaction time to 0 for this
//(self.time_a.to_f32() - self.get_t0())*C_LIGHT_PADDLE*10.0 // 10 for cm->mm
// FIX - paddle units!!
if self.time_a == self.time_b {
return 0.5*self.paddle_len;
}
if self.time_a < self.time_b {
// it is closer to A side
return 0.5*self.paddle_len - (self.time_b.to_f32() - self.time_a.to_f32())*0.5*C_LIGHT_PADDLE*10.0;
//return (self.time_b.to_f32() - self.time_a.to_f32())*C_LIGHT_PADDLE*10.0;
}
else {
return self.paddle_len*0.5 + (self.time_a.to_f32() - self.time_b.to_f32())*0.5*C_LIGHT_PADDLE*10.0;
}
}
/// Calculate the interaction time based on the peak timings measured
/// at the paddle ends A and B
///
/// That this works, the length of the paddle has to
/// be set before (in mm).
/// This assumes that the cable on both sides of the paddle are
/// the same length
pub fn get_t0(&self) -> f32 {
0.5*(self.time_a.to_f32() + self.time_b.to_f32() - (self.paddle_len/(10.0*C_LIGHT_PADDLE)) - ((self.cable_len*2.0)/(10.0*C_LIGHT_CABLE)))
}
/// Philip's energy deposition based on peak height
pub fn get_edep(&self) -> f32 {
(1.29/34.3)*(self.peak_a.to_f32() + self.peak_b.to_f32()) / 2.0
}
pub fn get_time_a(&self) -> f32 {
self.time_a.to_f32()
}
pub fn set_time_a(&mut self, t : f32) {
self.time_a = f16::from_f32(t);
}
pub fn get_time_b(&self) -> f32 {
self.time_b.to_f32()
}
pub fn set_time_b(&mut self, t : f32) {
self.time_b = f16::from_f32(t)
}
pub fn get_peak_a(&self) -> f32 {
self.peak_a.to_f32()
}
pub fn set_peak_a(&mut self, p : f32) {
self.peak_a = f16::from_f32(p)
}
pub fn get_peak_b(&self) -> f32 {
self.peak_b.to_f32()
}
pub fn set_peak_b(&mut self, p : f32) {
self.peak_b = f16::from_f32(p)
}
pub fn get_charge_a(&self) -> f32 {
self.charge_a.to_f32()
}
pub fn set_charge_a(&mut self, c : f32) {
self.charge_a = f16::from_f32(c)
}
pub fn get_charge_b(&self) -> f32 {
self.charge_b.to_f32()
}
pub fn set_charge_b(&mut self, c : f32) {
self.charge_b = f16::from_f32(c)
}
pub fn get_bl_a(&self) -> f32 {
self.baseline_a.to_f32()
}
pub fn get_bl_b(&self) -> f32 {
self.baseline_b.to_f32()
}
pub fn get_bl_a_rms(&self) -> f32 {
self.baseline_a_rms.to_f32()
}
pub fn get_bl_b_rms(&self) -> f32 {
self.baseline_b_rms.to_f32()
}
////pub fn get_timestamp48(&self) -> u64 {
//// ((self.timestamp16 as u64) << 32) | self.timestamp32 as u64
////}
//
//pub fn set_edep(&mut self, edep : f32) {
// if edep >= 100.0 {
// self.charge_min_i = u16::MAX;
// } else {
// self.charge_min_i = F32TOU16_EDEP*(edep.floor() as u16);
// }
//}
//pub fn get_edep(&self) -> f32 {
// self.charge_min_i as f32 * U16TOF32_EDEP
//}
//
//pub fn set_pos_across(&mut self, pa : f32) {
// if pa >= 1800.0 {
// self.pos_across = u16::MAX;
// } else {
// self.pos_across = F32TOU16_POS_ACROSS*(pa.floor() as u16);
// }
//}
//pub fn get_pos_across(&self) -> f32 {
// self.pos_across as f32 * U16TOF32_POS_ACROSS
//}
//pub fn set_t0(&mut self, t0 : f32) {
// if t0 >= MAX_PEAK_TIME {
// self.t0 = u16::MAX;
// } else {
// self.t0 = F32TOU16_T0*(t0.floor() as u16);
// }
//}
//pub fn get_t0(&self) -> f32 {
// self.t0 as f32 * U16TOF32_T0
//}
//pub fn set_peak_a(&mut self, peak : f32 ) {
// if peak >= MAX_PEAK_HEIGHT {
// self.peak_a = u16::MAX;
// } else {
// self.peak_a = F32TOU16_PEAK_HEIGHT*(peak.floor() as u16);
// }
//}
//
//pub fn get_peak_a(&self) -> f32 {
// self.peak_a as f32 * U16TOF32_PEAK_HEIGHT
//}
//pub fn set_peak_b(&mut self, peak : f32 ) {
// if peak >= MAX_PEAK_HEIGHT {
// self.peak_b = u16::MAX;
// } else {
// self.peak_b = F32TOU16_PEAK_HEIGHT*(peak.floor() as u16);
// }
//}
//
//pub fn get_peak_b(&self) -> f32 {
// self.peak_b as f32 * U16TOF32_PEAK_HEIGHT
//}
//
//pub fn set_peak(&mut self, peak : f32, side : usize ) {
// assert!(side == 0 || side == 1);
// if side == 0 {self.set_peak_a(peak);}
// if side == 1 {self.set_peak_b(peak);}
//}
//pub fn set_time_a(&mut self, time : f32 ) {
// if time >= MAX_PEAK_TIME {
// self.time_a = u16::MAX;
// } else {
// self.time_a = F32TOU16_PEAK_TIME*(time.floor() as u16);
// }
//}
//pub fn get_time_a(&self) -> f32 {
// self.time_a as f32 * U16TOF32_PEAK_TIME
//}
//pub fn set_time_b(&mut self, time : f32 ) {
// if time >= MAX_PEAK_TIME {
// self.time_b = u16::MAX;
// } else {
// self.time_b = F32TOU16_PEAK_TIME*(time.floor() as u16);
// }
//}
//
//pub fn get_time_b(&self) -> f32 {
// self.time_b as f32 * U16TOF32_PEAK_TIME
//}
//
//pub fn set_time(&mut self, time : f32, side : usize ) {
// assert!(side == 0 || side == 1);
// if side == 0 {self.set_time_a(time);}
// if side == 1 {self.set_time_b(time);}
//}
//pub fn set_charge_a(&mut self, charge : f32 ) {
// if charge >= MAX_PEAK_CHARGE {
// self.charge_a = u16::MAX;
// } else {
// self.charge_a = F32TOU16_PEAK_CHARGE*(charge.floor() as u16);
// }
//}
//
//pub fn get_charge_a(&self) -> f32 {
// self.charge_a as f32 * U16TOF32_PEAK_CHARGE
//}
//pub fn set_charge_b(&mut self, charge : f32 ) {
// if charge >= MAX_PEAK_CHARGE {
// self.charge_b = u16::MAX;
// } else {
// self.charge_b = F32TOU16_PEAK_CHARGE*(charge.floor() as u16);
// }
//}
//
//pub fn get_charge_b(&self) -> f32 {
// self.charge_b as f32 * U16TOF32_PEAK_CHARGE
//}
//
//pub fn set_charge(&mut self, charge : f32, side : usize ) {
// assert!(side == 0 || side == 1);
// if side == 0 {self.set_charge_a(charge);}
// if side == 1 {self.set_charge_b(charge);}
//}
#[cfg(feature="random")]
pub fn from_random() -> TofHit {
let mut pp = TofHit::new();
let mut rng = rand::thread_rng();
pp.paddle_id = rng.gen::<u8> ();
pp.time_a = f16::from_f32(rng.gen::<f32>());
pp.time_b = f16::from_f32(rng.gen::<f32>());
pp.peak_a = f16::from_f32(rng.gen::<f32>());
pp.peak_b = f16::from_f32(rng.gen::<f32>());
pp.charge_a = f16::from_f32(rng.gen::<f32>());
pp.charge_b = f16::from_f32(rng.gen::<f32>());
//pp.charge_min_i = rng.gen::<>();
//pp.pos_across = rng.gen::<>();
//pp.t0 = rng.gen::<>();
//pp.ctr_etx = rng.gen::<u8>();
pp.version = ProtocolVersion::from(rng.gen::<u8>());
pp.baseline_a = f16::from_f32(rng.gen::<f32>());
pp.baseline_a_rms = f16::from_f32(rng.gen::<f32>());
pp.baseline_b = f16::from_f32(rng.gen::<f32>());
pp.baseline_b_rms = f16::from_f32(rng.gen::<f32>());
pp.phase = f16::from_f32(rng.gen::<f32>());
pp
}
}
#[cfg(feature = "random")]
#[test]
fn serialization_tofhit() {
for _ in 0..100 {
let mut pos = 0;
let data = TofHit::from_random();
let test = TofHit::from_bytestream(&data.to_bytestream(),&mut pos).unwrap();
assert_eq!(pos, TofHit::SIZE);
assert_eq!(data, test);
}
}