tof_dataclasses/
analysis.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
//! Implementations of analysis engine
//! This is based on the original code 
//! by J.Zweerink
//!
  
use crate::errors::WaveformError;
use crate::constants::{
    NWORDS,
    C_LIGHT_PADDLE,
};

#[cfg(feature="advanced-algorithms")]
extern crate smoothed_z_score;
#[cfg(feature="advanced-algorithms")]
use smoothed_z_score::{Peak, PeaksDetector, PeaksFilter};

/// Return the bin with the maximum ADC value
pub fn get_max_bin(voltages    : &Vec<f32>,
                   lower_bound : usize,
                   window      : usize) -> Result<usize, WaveformError> {
  if lower_bound >= voltages.len() {
    error!("Invalid value for lower_bound {}", lower_bound);
    return Err(WaveformError::OutOfRangeLowerBound);
  }
  if lower_bound + window >= voltages.len() {
    error!("Lower bound {} + window {} is too large!", lower_bound, window); 
    return Err(WaveformError::OutOfRangeUpperBound);
  }
  let mut maxval = voltages[lower_bound];
  let mut maxbin = lower_bound;
  for n in lower_bound..lower_bound + window {
    if voltages[n] > maxval {
      maxval  = voltages[n];
      maxbin  = n;
    }
  } // end for
  trace!("Got maxbin {} with a value of {}", maxbin, maxval);
  Ok(maxbin)
} // end fn

///
///
///
///
pub fn interpolate_time (voltages      : &Vec<f32>,
                         nanoseconds   : &Vec<f32>, 
                         mut threshold : f32,
                         mut idx       : usize,
                         size          : usize) -> Result<f32, WaveformError> {
  if idx + 1 > nanoseconds.len() {
    return Err(WaveformError::OutOfRangeUpperBound);
  }
  threshold     = threshold.abs();
  let mut lval  = (voltages[idx]).abs();
  let mut hval : f32 = 0.0; 
  if size == 1 {
    hval = (voltages[idx+1]).abs();
  } else {
    for n in idx+1..idx+size {
      hval = voltages[n].abs();
      if (hval>=threshold) && (threshold<=lval) { // Threshold crossing?
        idx = n-1; // Reset idx to point before crossing
        break;
      }
      lval = hval;
    }
  }
  if ((lval > threshold) && (size != 1)) || lval == hval {
    return Ok(nanoseconds[idx]);
  } else {
    return Ok(nanoseconds[idx] 
          + (threshold-lval)/(hval-lval) * (nanoseconds[idx+1]
          - nanoseconds[idx]));
  }
}



/// Integrate a waveform
///
/// That this works right, prior to the 
/// integration we should subtract the 
/// baseline.
///
/// # Arguments:
///
/// * impedance : typically this is 
pub fn integrate(voltages     : &Vec<f32>,
                 nanoseconds  : &Vec<f32>,
                 lo_bin       : usize,
                 upper_bin    : usize,
                 impedance    : f32) -> Result<f32, WaveformError>  {
  //if lower_bound < 0.0 { 
  //  return Err(WaveformError::NegativeLowerBound);
  //}
  //let lo_bin          = time2bin(nanoseconds,lower_bound)?;
  //let mut size_bin    = time2bin(nanoseconds,lower_bound + size)?;
  //println!("lower bound {}, lo bin {}, size bin {}", lower_bound, lo_bin, size_bin);
  //size_bin = size_bin - lo_bin;
  //if lo_bin + size_bin > voltages.len() {
  //  warn!("Limiting integration range to waveform size!");
  //  size_bin = voltages.len() - lo_bin;
  //}
  if upper_bin > voltages.len() {
    return Err(WaveformError::OutOfRangeUpperBound);
  }
  if lo_bin < 1 {
    return Err(WaveformError::OutOfRangeLowerBound);
  }
  let mut sum = 0f32;
  //let upper_bin = lo_bin + size_bin;
  for n in lo_bin..upper_bin {
    sum += voltages[n] * (nanoseconds[n] - nanoseconds[n-1]) ;
  }
  sum /= impedance;
  Ok(sum)
}

/// Given a time in ns, find the bin most closely corresponding to that time
/// # Arguments
/// 
pub fn time2bin(nanoseconds : &Vec<f32>,
                t_ns        : f32) -> Result<usize, WaveformError> {
  for n in 0..nanoseconds.len() {
    if nanoseconds[n] > t_ns {
      return Ok(n-1);
    }
  }
  debug!("Did not find a bin corresponding to the given time {}!", t_ns);
  return Err(WaveformError::TimesTooSmall);
}

/// The pedestal is the baseline of the waveform
///
/// # Arguments
///
/// * voltages      : calibrated waveform
/// * threshold     : consider everything below threshold
///                   the pedestal (typical 10mV)
/// * ped_begin_bin : beginning of the window for pedestal
///                   calculation (bin)
/// * ped_range_bin : length of the window for pedestal
///                   calculation (in bins)
///
/// # Return
/// pedestal value with error (quadratic error)
pub fn calculate_pedestal(voltages      : &Vec<f32>,
                          threshold     : f32,
                          ped_begin_bin : usize,
                          ped_range_bin : usize) -> (f32,f32) {
  let mut sum  = 0f32;
  let mut sum2 = 0f32;
  for k in ped_begin_bin..ped_begin_bin + ped_range_bin {
    if f32::abs(voltages[k]) < threshold {
      sum  += voltages[k];
      sum2 += voltages[k]*voltages[k];
    }
  }
  let average = sum/(ped_range_bin as f32);
  let sigma   = f32::sqrt(sum2/(ped_range_bin as f32 - (average*average)));
  (average, sigma)
}

/// Find the onset time of a peak with a 
/// constant fraction discrimination method.
///
/// The peaks have to be sane
/// FIXME: Maybe introduce a separate check?
pub fn cfd_simple(voltages    : &Vec<f32>,
                  nanoseconds : &Vec<f32>,
                  cfd_frac    : f32,
                  start_peak  : usize,
                  end_peak    : usize) -> Result<f32, WaveformError> {

  let idx = get_max_bin(voltages, start_peak, end_peak-start_peak)?;
  let mut sum : f32 = 0.0;
  for n in idx-1..idx+1{
    sum += voltages[n];
  }
  let tmp_thresh : f32 = f32::abs(cfd_frac * (sum / 3.0));
  trace!("Calculated tmp threshold of {}", tmp_thresh);
  // Now scan through the waveform around the peak to find the bin
  // crossing the calculated threshold. Bin idx is the peak so it is
  // definitely above threshold. So let's walk backwards through the
  // trace until we find a bin value less than the threshold.
  let mut lo_bin : usize = voltages.len();
  let mut n = idx;
  if idx < start_peak {
    error!("The index {} is smaller than the beginning of the peak {}!", idx, start_peak);
    return Err(WaveformError::OutOfRangeLowerBound);
  }
  if start_peak >= 10 {
    while n > start_peak - 10 {
    //for n in (idx..start_peak - 10).rev() {
      if f32::abs(voltages[n]) < tmp_thresh {
        lo_bin = n;
        break;
      }
      n -= 1;
    }  
  } else {
    debug!("We require that the peak is at least 10 bins away from the start!");
    return Err(WaveformError::OutOfRangeLowerBound);
  }

  trace!("Lo bin {} , start peak {}", lo_bin, start_peak);
  let cfd_time : f32;
  if lo_bin < nanoseconds.len() -1 {
    cfd_time = interpolate_time(voltages, nanoseconds, tmp_thresh, lo_bin, 1)?;  
  } else {
    cfd_time = nanoseconds[nanoseconds.len() - 1];
  } 
  Ok(cfd_time)
}

/// Find peaks in a given time window (in ns) by 
/// comparing the waveform voltages with the 
/// given threshold. 
///
/// #Arguments:
/// * start_time     : begin to look for peaks after 
///                    this (local) waveform time 
/// * window_size    : (in ns)
/// * min_peak_width : minimum number of consequtive bins
///                    which have to be over threshold
///                    so that it is considered a peak
/// * threshold      : peaks are found when voltages go
///                    over threshold for at leas
///                    min_peak_width bins
/// * max_peaks      : stop algorithm after max_peaks are
///                    found, the rest will be ignored
/// #Returns:
/// 
/// Vec<(peak_begin_bin, peak_end_bin)>
///
pub fn find_peaks(voltages       : &Vec<f32>,
                  nanoseconds    : &Vec<f32>,
                  start_time     : f32,
                  window_size    : f32,
                  min_peak_width : usize,
                  threshold      : f32,
                  max_peaks      : usize)
-> Result<Vec<(usize,usize)>, WaveformError> {
  let mut peaks      = Vec::<(usize,usize)>::new();
  let mut start_bin  = time2bin(nanoseconds, start_time)?;
  if start_bin <= 10 {
    debug!("We deliberatly do not search for peaks within the first 10 bins! Correcting..");
    start_bin = 10;
  }
  let window_bin = time2bin(nanoseconds, start_time + window_size)? - start_bin;
  if start_bin + window_bin > voltages.len () {
    return Err(WaveformError::OutOfRangeUpperBound);
  }

  let mut pos = 0usize;
  // find the first bin when voltage
  // goes over threshold
  for k in start_bin..start_bin + window_bin {
    if voltages[k] >= threshold {
      pos = k;
      break;
    }
  }
  if pos == 0 && start_bin == 0 && voltages[pos] < threshold {
    // waveform did not cross threshold
    return Err(WaveformError::DidNotCrossThreshold)
  }
  // actual peak finding
  let mut nbins_peak   = 0usize;
  let mut begin_peak   = pos;
  let mut end_peak  : usize;
  if (pos + window_bin) > voltages.len() {
    return Err(WaveformError::OutOfRangeUpperBound);
  }
  for k in pos..(pos + window_bin) {
    if voltages[k] >= threshold {
      nbins_peak += 1;
      let mut slope = 0i16; // slope can be positive (1)
                            // or negative (-1)
                            // as soon as the slope turns, 
                            // we declare the peak over, 
                            // if it is still positive, we
                            // continue to count the bins
      if nbins_peak == min_peak_width {
        // in this case, we don't care about the slope
        begin_peak  = k - min_peak_width -1;
      } else if nbins_peak > min_peak_width {
        for j in 0..min_peak_width {
          if voltages[k -j] > voltages[k-j-1] {
            slope = 1; // still ascending
          }
        }
        if slope == 1 {
          // we consider this the same peak
          continue;
        } 
        if slope == 0 {
          // each bump counts as separate peak
          end_peak = k;
          nbins_peak = 0; // peak is done
          peaks.push((begin_peak, end_peak));
          if peaks.len() == max_peaks {
            break;
          }
        }
      } // if nbins_peak < min_peak_width, we just 
        // continue going to check if it is still 
        // over threshold
    } else {
      if nbins_peak > min_peak_width {
        end_peak = k;
        peaks.push((begin_peak, end_peak));
        if peaks.len() == max_peaks {
          break;
        }
      }
      nbins_peak = 0;
    }
  }
  // FIXME - remove invalid peaks
  let len_pks_dirty = peaks.len();
  peaks.retain(|&x| {(x.0 < NWORDS - 1) & (x.1 <= NWORDS - 1)});
  let len_pks_clean = peaks.len();
  if len_pks_clean != len_pks_dirty {
    debug!("We removed {} pks because they had values outside of 0-{}!", len_pks_dirty - len_pks_clean, NWORDS);
  }
  Ok(peaks)
}

/// An approximation to calculate the energy deposition as used by
/// Philip/Jamie/Jeff
pub fn calc_edep_simple(peak_voltage : f32) -> f32 {
  (-1000.0 * peak_voltage) / (21.0 * peak_voltage - 35260.0)
}


/// Calculate the interaction time based on the peak timings measured 
/// at the paddle ends A and B
///
/// # Arguments
///
/// * t_a           : (absolute) timing for the peak measured at A side
/// * t_b           : (absolute) timing for the peak measured at B side
/// * paddle_length : the length of the paddle in cm
pub fn get_paddle_t0(t_a : f32, t_b : f32, paddle_length : f32) -> f32 {
  0.5*(t_a + t_b - (paddle_length/(10.0*C_LIGHT_PADDLE)))
}

/// Calculate the distance from the A side
/// We will Always use the A side to measure
/// "pos_accross"
///
/// Returns:
///   Distance from "A" side (in mm)
pub fn pos_across(t_a : f32, t0 : f32) -> f32 {
  (t_a - t0)*C_LIGHT_PADDLE*10.0 // 10 for cm->mm 
}

#[cfg(feature = "advanced-algorithms")]
fn find_sequence_ranges(vec: Vec<usize>) -> Vec<(usize, usize)> {
  let mut ranges = Vec::new();
  let mut start = vec[0];
  let mut end   = vec[0];

  for &value in vec.iter().skip(1) {
    if value == end + 1 {
      // Extend the current sequence
      end = value;
    } else {
      // End of current sequence, start of a new one
      ranges.push((start, end));
      start = value;
      end = value;
    }
  }

  // Add the last sequence
  ranges.push((start, end));
  ranges
}

#[cfg(feature = "advanced-algorithms")]
/// Z-scores peak finding algorithm
///
/// Brakel, J.P.G. van (2014).
/// "Robust peak detection algorithm using z-scores". 
/// Stack Overflow.
/// Available at: <https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/i22640362#22640362> (version: 2020-11-08).
///
/// Robust peak detection algorithm (using z-scores)
///
/// [..] algorithm that works very well for these types of datasets.
/// It is based on the principle of dispersion:
/// if a new datapoint is a given x number of standard deviations away
/// from a moving mean, the algorithm gives a signal.
/// The algorithm is very robust because it constructs a separate moving mean
/// and deviation, such that previous signals do not corrupt
/// the signalling threshold for future signals.
/// The sensitivity of the algorithm is therefore robust to previous signals.
///
/// # Arguments:
///
/// * nanoseconds   : calibrated waveform times
/// * voltages      : calibrated waveform voltages
/// * start_time    : restrict the algorithm on a 
///                   certain time window, start 
///                   at start_time
/// * window_size   : in ns
/// * lag           : The lag of the moving window that calculates the mean
///                   and standard deviation of historical data.
///                   A longer window takes more historical data in account.
///                   A shorter window is more adaptive,
///                   such that the algorithm will adapt to new information
///                   more quickly.
///                   For example, a lag of 5 will use the last 5 observations
///                   to smooth the data.
/// * threshold     : The "z-score" at which the algorithm signals.
///                   Simply put, if the distance between a new datapoint
///                   and the moving mean is larger than the threshold
///                   multiplied with the moving standard deviation of the data,
///                   the algorithm provides a signal.
///                   For example, a threshold of 3.5 will signal if a datapoint
///                   is 3.5 standard deviations away from the moving mean. 
/// * influence     : The influence (between 0 and 1) of new signals on
///                   the calculation of the moving mean and moving standard deviation.
///                   For example, an influence parameter of 0.5 gives new signals
///                   half of the influence that normal datapoints have.
///                   Likewise, an influence of 0 ignores signals completely
///                   for recalculating the new threshold.
///                   An influence of 0 is therefore the most robust option 
///                   (but assumes stationarity);
///                   putting the influence option at 1 is least robust.
///                   For non-stationary data, the influence option should
///                   therefore be put between 0 and 1.
pub fn find_peaks_zscore(nanoseconds    : &Vec<f32>,
                         voltages       : &Vec<f32>,
                         start_time     : f32,
                         window_size    : f32,
                         lag            : usize,
                         threshold      : f64,
                         influence      : f64)
-> Result<Vec<(usize,usize)>, WaveformError> {
  let mut peaks = Vec::<(usize, usize)>::new();
  let start_bin = time2bin(nanoseconds, start_time)?;
  let end_bin   = time2bin(nanoseconds, start_time + window_size)?;
  let mut ranged_voltage = Vec::<f32>::with_capacity(end_bin - start_bin);
  ranged_voltage.extend_from_slice(&voltages[start_bin..=end_bin]);
  //30, 5.0, 0.0

  let output: Vec<_> = voltages
            .into_iter()
            .enumerate()
            .peaks(PeaksDetector::new(lag, threshold, influence), |e| *e.1 as f64)
            .map(|((i, _), p)| (i, p))
            .collect();
  // we ignore low peaks
  if output.len() == 0 {
    return Ok(peaks);
  }
  let mut peak_high = Vec::<usize>::new();
  for k in output.iter() {
    if matches!(k.1, Peak::High) {
      peak_high.push(k.0);
    }
  }
  if peaks.len() > 0 {
    peaks = find_sequence_ranges(peak_high); 
  }
  Ok(peaks)
}