scan_uio_buffers/
scan_uio_buffers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
extern crate liftof_rb;

use std::{thread, time};
use indicatif::{ProgressBar, 
                ProgressStyle};
use tof_dataclasses::events::RBEvent;
use tof_dataclasses::serialization::Serialization;

use liftof_rb::control::*;
use liftof_rb::memory::RamBuffer;
use liftof_rb::memory::RegisterError;
use liftof_rb::memory::map_physical_mem_read;
#[macro_use] extern crate log;

///! Return the bytes located at the memory
pub fn get_bytestream(addr_space : &str, 
                  addr : u32,
                  len  : usize) -> Result<Vec::<u8>, RegisterError> {

  let blobsize = RBEvent::SIZE;
  let vec_size = blobsize*len;
  // FIXME - allocate the vector elsewhere and 
  // pass it by reference
  let mut bytestream = Vec::<u8>::with_capacity(vec_size);

  let sz = std::mem::size_of::<u8>();
  let m = match map_physical_mem_read(addr_space, addr, vec_size * sz) {
    Ok(m) => m,
    Err(err) => {
      println!("Failed to mmap! {:?}", err);
      return Err(RegisterError::MMapFail);
    }
  };
  let p = m.as_ptr() as *const u8;
  (0..vec_size).for_each(|x| unsafe {
    let value = std::ptr::read_volatile(p.offset(x as isize));
    bytestream.push(value); // push is free, since we 
                            // allocated the vector in the 
                            // beginning
  });
  Ok(bytestream)
}

///! FIXME - should become a feature
pub fn setup_progress_bar(msg : String, size : u64, format_string : String) -> ProgressBar {
  let bar = ProgressBar::new(size).with_style(
    ProgressStyle::with_template(&format_string)
    .unwrap()
    .progress_chars("##-"));
  //);
  bar.set_message(msg);
  //bar.finish_and_clear();
  ////let mut style_found = false;
  //let style_ok = ProgressStyle::with_template("[{elapsed_precise}] {bar:40.cyan/blue} {pos:>7}/{len:7} {msg}");
  //match style_ok {
  //  Ok(_) => { 
  //    style_found = true;
  //  },
  //  Err(ref err)  => { warn!("Can not go with chosen style! Not using any! Err {err}"); }
  //}  
  //if style_found { 
  //  bar.set_style(style_ok.unwrap()
  //                .progress_chars("##-"));
  //}
  bar
}




fn main() {
  // some pre-defined time units for 
  // sleeping
  let two_seconds = time::Duration::from_millis(2000);
  let one_milli   = time::Duration::from_millis(1);

  //info!("Setting daq to idle mode");
  //match idle_drs4_daq() {
  //  Ok(_)    => info!("DRS4 set to idle:"),
  //  Err(err) => panic!("Can't set DRS4 to idle!!")
  //}
  //thread::sleep(one_milli);
  //match setup_drs4() {
  //  Ok(_)    => info!("DRS4 setup routine complete!"),
  //  Err(err) => panic!("Failed to setup DRS4!!")
  //}

  
  // get the current cache sizes
  let buf_a = RamBuffer::A;
  let buf_b = RamBuffer::B;
  reset_dma().unwrap();
  thread::sleep(one_milli);
  let buf_a_start = get_blob_buffer_occ(&buf_a).unwrap();
  let buf_b_start = get_blob_buffer_occ(&buf_b).unwrap();
  info!("We got start values for the blob buffers at {buf_a_start} and {buf_b_start}");
  // now we are ready to receive data 
  //info!("Starting daq!");
  //match start_drs4_daq() {
  //  Ok(_)    => info!(".. successful!"),
  //  Err(err) => panic!("DRS4 start failed!")
  //}

  // let go for a few seconds to get a 
  // rate estimate
  println!("getting rate estimate..");
  thread::sleep(two_seconds);
  let rate = get_trigger_rate().unwrap();
  println!("Running at a trigger rate of {rate} Hz");
  // the trigger rate defines at what intervals 
  // we want to print out stuff
  // let's print out something apprx every 2
  // seconds

  // event loop
  //let mut evt_cnt          : u32;
  //let mut last_evt_cnt     : u32 = 0;

  //let mut n_events         : u64 = 0;

  //let mut skipped_events   : u64 = 0;
  //let mut delta_events     : u64 = 0;

  //let mut first_iter       = true;
  
  // acquire this many events
  //let max_event : u64 = 10000;

  // sizes of the buffers

  match enable_trigger() {
    Ok(_) => (),
    Err(err) => error!("Can not enable triggers, Error {err}")
  }
  let mut dma_min = std::u32::MAX;
  let mut dma_max = 0u32;

  let mut buff_a_min_occ : u32 = 4294967295;
  let mut buff_b_min_occ : u32 = 4294967295;
  let mut buff_a_max_occ : u32 = 0;
  let mut buff_b_max_occ : u32 = 0;
  let mut buff_a_occ : u32;
  let mut buff_b_occ : u32;
  let buff_a = RamBuffer::A;
  let buff_b = RamBuffer::B;
  let mut n_iter = 0;
  loop {
    n_iter += 1;
    //evt_cnt = get_event_count().unwrap();
    //if first_iter {
    //  last_evt_cnt = evt_cnt;
    //  first_iter = false;
    //}
    //if evt_cnt == last_evt_cnt {
    //  thread::sleep(one_milli);
    //  continue;
    //}
    buff_a_occ  = get_blob_buffer_occ(&buff_a).unwrap();
    buff_b_occ  = get_blob_buffer_occ(&buff_b).unwrap();
    let dma_ptr = get_dma_pointer().unwrap();
    //println!("{}", dma_ptr);
    if buff_a_occ > buff_a_max_occ {
        buff_a_max_occ = buff_a_occ;
    }
    if buff_a_occ < buff_a_min_occ {
        buff_a_min_occ = buff_a_occ;
    }
    if buff_b_occ > buff_b_max_occ {
        buff_b_max_occ = buff_b_occ;
    }
    if buff_b_occ < buff_b_min_occ {
        buff_b_min_occ = buff_b_occ;
    }
    if dma_ptr > dma_max {
        dma_max = dma_ptr;
    }
    if dma_ptr < dma_min {
        dma_min = dma_ptr;
    }
    // let's do some work
    if n_iter % 100000 == 0 {
        println!("New MAX A occ {buff_a_max_occ}");
        println!("New MIN A occ {buff_a_min_occ}");
        println!("New MAX B occ {buff_b_max_occ}");
        println!("New MIN B occ {buff_b_min_occ}");
        println!("New MAX dma ptr {dma_max}");
        println!("New MIN dma ptr {dma_min}");
        println!("Estmated A buff size {}", buff_a_max_occ - buff_a_min_occ);
        println!("Estmated B buff size {}", buff_b_max_occ - buff_b_min_occ);
        println!("----- N iterations {n_iter}"); 
    }
  }
} // end main