rustfft/sse/
sse_vector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
use core::arch::x86_64::*;
use num_complex::Complex;
use std::ops::{Deref, DerefMut};

use crate::array_utils::DoubleBuf;

// Read these indexes from an SseArray and build an array of simd vectors.
// Takes a name of a vector to read from, and a list of indexes to read.
// This statement:
// ```
// let values = read_complex_to_array!(input, {0, 1, 2, 3});
// ```
// is equivalent to:
// ```
// let values = [
//     input.load_complex(0),
//     input.load_complex(1),
//     input.load_complex(2),
//     input.load_complex(3),
// ];
// ```
macro_rules! read_complex_to_array {
    ($input:ident, { $($idx:literal),* }) => {
        [
        $(
            $input.load_complex($idx),
        )*
        ]
    }
}

// Read these indexes from an SseArray and build an array or partially filled simd vectors.
// Takes a name of a vector to read from, and a list of indexes to read.
// This statement:
// ```
// let values = read_partial1_complex_to_array!(input, {0, 1, 2, 3});
// ```
// is equivalent to:
// ```
// let values = [
//     input.load1_complex(0),
//     input.load1_complex(1),
//     input.load1_complex(2),
//     input.load1_complex(3),
// ];
// ```
macro_rules! read_partial1_complex_to_array {
    ($input:ident, { $($idx:literal),* }) => {
        [
        $(
            $input.load1_complex($idx),
        )*
        ]
    }
}

// Write these indexes of an array of simd vectors to the same indexes of an SseArray.
// Takes a name of a vector to read from, one to write to, and a list of indexes.
// This statement:
// ```
// let values = write_complex_to_array!(input, output, {0, 1, 2, 3});
// ```
// is equivalent to:
// ```
// let values = [
//     output.store_complex(input[0], 0),
//     output.store_complex(input[1], 1),
//     output.store_complex(input[2], 2),
//     output.store_complex(input[3], 3),
// ];
// ```
macro_rules! write_complex_to_array {
    ($input:ident, $output:ident, { $($idx:literal),* }) => {
        $(
            $output.store_complex($input[$idx], $idx);
        )*
    }
}

// Write the low half of these indexes of an array of simd vectors to the same indexes of an SseArray.
// Takes a name of a vector to read from, one to write to, and a list of indexes.
// This statement:
// ```
// let values = write_partial_lo_complex_to_array!(input, output, {0, 1, 2, 3});
// ```
// is equivalent to:
// ```
// let values = [
//     output.store_partial_lo_complex(input[0], 0),
//     output.store_partial_lo_complex(input[1], 1),
//     output.store_partial_lo_complex(input[2], 2),
//     output.store_partial_lo_complex(input[3], 3),
// ];
// ```
macro_rules! write_partial_lo_complex_to_array {
    ($input:ident, $output:ident, { $($idx:literal),* }) => {
        $(
            $output.store_partial_lo_complex($input[$idx], $idx);
        )*
    }
}

// Write these indexes of an array of simd vectors to the same indexes, multiplied by a stride, of an SseArray.
// Takes a name of a vector to read from, one to write to, an integer stride, and a list of indexes.
// This statement:
// ```
// let values = write_complex_to_array_separate!(input, output, {0, 1, 2, 3});
// ```
// is equivalent to:
// ```
// let values = [
//     output.store_complex(input[0], 0),
//     output.store_complex(input[1], 2),
//     output.store_complex(input[2], 4),
//     output.store_complex(input[3], 6),
// ];
// ```
macro_rules! write_complex_to_array_strided {
    ($input:ident, $output:ident, $stride:literal, { $($idx:literal),* }) => {
        $(
            $output.store_complex($input[$idx], $idx*$stride);
        )*
    }
}

// A trait to hold the BVectorType and COMPLEX_PER_VECTOR associated data

pub trait SseNum {
    type VectorType;
    const COMPLEX_PER_VECTOR: usize;
}
impl SseNum for f32 {
    type VectorType = __m128;
    const COMPLEX_PER_VECTOR: usize = 2;
}
impl SseNum for f64 {
    type VectorType = __m128d;
    const COMPLEX_PER_VECTOR: usize = 1;
}

// A trait to handle reading from an array of complex floats into SSE vectors.
// SSE works with 128-bit vectors, meaning a vector can hold two complex f32,
// or a single complex f64.
pub trait SseArray<T: SseNum>: Deref {
    // Load complex numbers from the array to fill a SSE vector.
    unsafe fn load_complex(&self, index: usize) -> T::VectorType;
    // Load a single complex number from the array into a SSE vector, setting the unused elements to zero.
    unsafe fn load_partial1_complex(&self, index: usize) -> T::VectorType;
    // Load a single complex number from the array, and copy it to all elements of a SSE vector.
    unsafe fn load1_complex(&self, index: usize) -> T::VectorType;
}

impl SseArray<f32> for &[Complex<f32>] {
    #[inline(always)]
    unsafe fn load_complex(&self, index: usize) -> <f32 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + <f32 as SseNum>::COMPLEX_PER_VECTOR);
        _mm_loadu_ps(self.as_ptr().add(index) as *const f32)
    }

    #[inline(always)]
    unsafe fn load_partial1_complex(&self, index: usize) -> <f32 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + 1);
        _mm_castpd_ps(_mm_load_sd(self.as_ptr().add(index) as *const f64))
    }

    #[inline(always)]
    unsafe fn load1_complex(&self, index: usize) -> <f32 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + 1);
        _mm_castpd_ps(_mm_load1_pd(self.as_ptr().add(index) as *const f64))
    }
}
impl SseArray<f32> for &mut [Complex<f32>] {
    #[inline(always)]
    unsafe fn load_complex(&self, index: usize) -> <f32 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + <f32 as SseNum>::COMPLEX_PER_VECTOR);
        _mm_loadu_ps(self.as_ptr().add(index) as *const f32)
    }

    #[inline(always)]
    unsafe fn load_partial1_complex(&self, index: usize) -> <f32 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + 1);
        _mm_castpd_ps(_mm_load_sd(self.as_ptr().add(index) as *const f64))
    }

    #[inline(always)]
    unsafe fn load1_complex(&self, index: usize) -> <f32 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + 1);
        _mm_castpd_ps(_mm_load1_pd(self.as_ptr().add(index) as *const f64))
    }
}

impl SseArray<f64> for &[Complex<f64>] {
    #[inline(always)]
    unsafe fn load_complex(&self, index: usize) -> <f64 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + <f64 as SseNum>::COMPLEX_PER_VECTOR);
        _mm_loadu_pd(self.as_ptr().add(index) as *const f64)
    }

    #[inline(always)]
    unsafe fn load_partial1_complex(&self, _index: usize) -> <f64 as SseNum>::VectorType {
        unimplemented!("Impossible to do a partial load of complex f64's");
    }

    #[inline(always)]
    unsafe fn load1_complex(&self, _index: usize) -> <f64 as SseNum>::VectorType {
        unimplemented!("Impossible to do a partial load of complex f64's");
    }
}
impl SseArray<f64> for &mut [Complex<f64>] {
    #[inline(always)]
    unsafe fn load_complex(&self, index: usize) -> <f64 as SseNum>::VectorType {
        debug_assert!(self.len() >= index + <f64 as SseNum>::COMPLEX_PER_VECTOR);
        _mm_loadu_pd(self.as_ptr().add(index) as *const f64)
    }

    #[inline(always)]
    unsafe fn load_partial1_complex(&self, _index: usize) -> <f64 as SseNum>::VectorType {
        unimplemented!("Impossible to do a partial load of complex f64's");
    }

    #[inline(always)]
    unsafe fn load1_complex(&self, _index: usize) -> <f64 as SseNum>::VectorType {
        unimplemented!("Impossible to do a partial load of complex f64's");
    }
}

impl<'a, T: SseNum> SseArray<T> for DoubleBuf<'a, T>
where
    &'a [Complex<T>]: SseArray<T>,
{
    #[inline(always)]
    unsafe fn load_complex(&self, index: usize) -> T::VectorType {
        self.input.load_complex(index)
    }
    #[inline(always)]
    unsafe fn load_partial1_complex(&self, index: usize) -> T::VectorType {
        self.input.load_partial1_complex(index)
    }
    #[inline(always)]
    unsafe fn load1_complex(&self, index: usize) -> T::VectorType {
        self.input.load1_complex(index)
    }
}

// A trait to handle writing to an array of complex floats from SSE vectors.
// SSE works with 128-bit vectors, meaning a vector can hold two complex f32,
// or a single complex f64.
pub trait SseArrayMut<T: SseNum>: SseArray<T> + DerefMut {
    // Store all complex numbers from a SSE vector to the array.
    unsafe fn store_complex(&mut self, vector: T::VectorType, index: usize);
    // Store the low complex number from a SSE vector to the array.
    unsafe fn store_partial_lo_complex(&mut self, vector: T::VectorType, index: usize);
    // Store the high complex number from a SSE vector to the array.
    unsafe fn store_partial_hi_complex(&mut self, vector: T::VectorType, index: usize);
}

impl SseArrayMut<f32> for &mut [Complex<f32>] {
    #[inline(always)]
    unsafe fn store_complex(&mut self, vector: <f32 as SseNum>::VectorType, index: usize) {
        debug_assert!(self.len() >= index + <f32 as SseNum>::COMPLEX_PER_VECTOR);
        _mm_storeu_ps(self.as_mut_ptr().add(index) as *mut f32, vector);
    }

    #[inline(always)]
    unsafe fn store_partial_hi_complex(
        &mut self,
        vector: <f32 as SseNum>::VectorType,
        index: usize,
    ) {
        debug_assert!(self.len() >= index + 1);
        _mm_storeh_pd(
            self.as_mut_ptr().add(index) as *mut f64,
            _mm_castps_pd(vector),
        );
    }
    #[inline(always)]
    unsafe fn store_partial_lo_complex(
        &mut self,
        vector: <f32 as SseNum>::VectorType,
        index: usize,
    ) {
        debug_assert!(self.len() >= index + 1);
        _mm_storel_pd(
            self.as_mut_ptr().add(index) as *mut f64,
            _mm_castps_pd(vector),
        );
    }
}

impl SseArrayMut<f64> for &mut [Complex<f64>] {
    #[inline(always)]
    unsafe fn store_complex(&mut self, vector: <f64 as SseNum>::VectorType, index: usize) {
        debug_assert!(self.len() >= index + <f64 as SseNum>::COMPLEX_PER_VECTOR);
        _mm_storeu_pd(self.as_mut_ptr().add(index) as *mut f64, vector);
    }

    #[inline(always)]
    unsafe fn store_partial_hi_complex(
        &mut self,
        _vector: <f64 as SseNum>::VectorType,
        _index: usize,
    ) {
        unimplemented!("Impossible to do a partial store of complex f64's");
    }
    #[inline(always)]
    unsafe fn store_partial_lo_complex(
        &mut self,
        _vector: <f64 as SseNum>::VectorType,
        _index: usize,
    ) {
        unimplemented!("Impossible to do a partial store of complex f64's");
    }
}

impl<'a, T: SseNum> SseArrayMut<T> for DoubleBuf<'a, T>
where
    Self: SseArray<T>,
    &'a mut [Complex<T>]: SseArrayMut<T>,
{
    #[inline(always)]
    unsafe fn store_complex(&mut self, vector: T::VectorType, index: usize) {
        self.output.store_complex(vector, index);
    }
    #[inline(always)]
    unsafe fn store_partial_lo_complex(&mut self, vector: T::VectorType, index: usize) {
        self.output.store_partial_lo_complex(vector, index);
    }
    #[inline(always)]
    unsafe fn store_partial_hi_complex(&mut self, vector: T::VectorType, index: usize) {
        self.output.store_partial_hi_complex(vector, index);
    }
}