rustfft/sse/sse_common.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
use std::any::TypeId;
// Calculate the sum of an expression consisting of just plus and minus, like `value = a + b - c + d`.
// The expression is rewritten to `value = a + (b - (c - d))` (note the flipped sign on d).
// After this the `$add` and `$sub` functions are used to make the calculation.
// For f32 using `_mm_add_ps` and `_mm_sub_ps`, the expression `value = a + b - c + d` becomes:
// ```let value = _mm_add_ps(a, _mm_sub_ps(b, _mm_sub_ps(c, d)));```
// Only plus and minus are supported, and all the terms must be plain scalar variables.
// Using array indices, like `value = temp[0] + temp[1]` is not supported.
macro_rules! calc_sum {
($add:ident, $sub:ident, + $acc:tt + $($rest:tt)*)=> {
$add($acc, calc_sum!($add, $sub, + $($rest)*))
};
($add:ident, $sub:ident, + $acc:tt - $($rest:tt)*)=> {
$sub($acc, calc_sum!($add, $sub, - $($rest)*))
};
($add:ident, $sub:ident, - $acc:tt + $($rest:tt)*)=> {
$sub($acc, calc_sum!($add, $sub, + $($rest)*))
};
($add:ident, $sub:ident, - $acc:tt - $($rest:tt)*)=> {
$add($acc, calc_sum!($add, $sub, - $($rest)*))
};
($add:ident, $sub:ident, $acc:tt + $($rest:tt)*)=> {
$add($acc, calc_sum!($add, $sub, + $($rest)*))
};
($add:ident, $sub:ident, $acc:tt - $($rest:tt)*)=> {
$sub($acc, calc_sum!($add, $sub, - $($rest)*))
};
($add:ident, $sub:ident, + $val:tt) => {$val};
($add:ident, $sub:ident, - $val:tt) => {$val};
}
// Calculate the sum of an expression consisting of just plus and minus, like a + b - c + d
macro_rules! calc_f32 {
($($tokens:tt)*) => { calc_sum!(_mm_add_ps, _mm_sub_ps, $($tokens)*)};
}
// Calculate the sum of an expression consisting of just plus and minus, like a + b - c + d
macro_rules! calc_f64 {
($($tokens:tt)*) => { calc_sum!(_mm_add_pd, _mm_sub_pd, $($tokens)*)};
}
// Helper function to assert we have the right float type
pub fn assert_f32<T: 'static>() {
let id_f32 = TypeId::of::<f32>();
let id_t = TypeId::of::<T>();
assert!(id_t == id_f32, "Wrong float type, must be f32");
}
// Helper function to assert we have the right float type
pub fn assert_f64<T: 'static>() {
let id_f64 = TypeId::of::<f64>();
let id_t = TypeId::of::<T>();
assert!(id_t == id_f64, "Wrong float type, must be f64");
}
// Shuffle elements to interleave two contiguous sets of f32, from an array of simd vectors to a new array of simd vectors
macro_rules! interleave_complex_f32 {
($input:ident, $offset:literal, { $($idx:literal),* }) => {
[
$(
extract_lo_lo_f32($input[$idx], $input[$idx+$offset]),
extract_hi_hi_f32($input[$idx], $input[$idx+$offset]),
)*
]
}
}
// Shuffle elements to interleave two contiguous sets of f32, from an array of simd vectors to a new array of simd vectors
// This statement:
// ```
// let values = separate_interleaved_complex_f32!(input, {0, 2, 4});
// ```
// is equivalent to:
// ```
// let values = [
// extract_lo_lo_f32(input[0], input[1]),
// extract_lo_lo_f32(input[2], input[3]),
// extract_lo_lo_f32(input[4], input[5]),
// extract_hi_hi_f32(input[0], input[1]),
// extract_hi_hi_f32(input[2], input[3]),
// extract_hi_hi_f32(input[4], input[5]),
// ];
macro_rules! separate_interleaved_complex_f32 {
($input:ident, { $($idx:literal),* }) => {
[
$(
extract_lo_lo_f32($input[$idx], $input[$idx+1]),
)*
$(
extract_hi_hi_f32($input[$idx], $input[$idx+1]),
)*
]
}
}
macro_rules! boilerplate_fft_sse_oop {
($struct_name:ident, $len_fn:expr) => {
impl<T: FftNum> Fft<T> for $struct_name<T> {
fn process_outofplace_with_scratch(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
_scratch: &mut [Complex<T>],
) {
if self.len() == 0 {
return;
}
if input.len() < self.len() || output.len() != input.len() {
// We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_outofplace(self.len(), input.len(), output.len(), 0, 0);
return; // Unreachable, because fft_error_outofplace asserts, but it helps codegen to put it here
}
let result = unsafe {
array_utils::iter_chunks_zipped(
input,
output,
self.len(),
|in_chunk, out_chunk| {
self.perform_fft_out_of_place(in_chunk, out_chunk, &mut [])
},
)
};
if result.is_err() {
// We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
// but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_outofplace(self.len(), input.len(), output.len(), 0, 0);
}
}
fn process_with_scratch(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
if self.len() == 0 {
return;
}
let required_scratch = self.get_inplace_scratch_len();
if scratch.len() < required_scratch || buffer.len() < self.len() {
// We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_inplace(
self.len(),
buffer.len(),
self.get_inplace_scratch_len(),
scratch.len(),
);
return; // Unreachable, because fft_error_inplace asserts, but it helps codegen to put it here
}
let scratch = &mut scratch[..required_scratch];
let result = unsafe {
array_utils::iter_chunks(buffer, self.len(), |chunk| {
self.perform_fft_out_of_place(chunk, scratch, &mut []);
chunk.copy_from_slice(scratch);
})
};
if result.is_err() {
// We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
// but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_inplace(
self.len(),
buffer.len(),
self.get_inplace_scratch_len(),
scratch.len(),
);
}
}
#[inline(always)]
fn get_inplace_scratch_len(&self) -> usize {
self.len()
}
#[inline(always)]
fn get_outofplace_scratch_len(&self) -> usize {
0
}
}
impl<T> Length for $struct_name<T> {
#[inline(always)]
fn len(&self) -> usize {
$len_fn(self)
}
}
impl<T> Direction for $struct_name<T> {
#[inline(always)]
fn fft_direction(&self) -> FftDirection {
self.direction
}
}
};
}
/* Not used now, but maybe later for the mixed radixes etc
macro_rules! boilerplate_sse_fft {
($struct_name:ident, $len_fn:expr, $inplace_scratch_len_fn:expr, $out_of_place_scratch_len_fn:expr) => {
impl<T: FftNum> Fft<T> for $struct_name<T> {
fn process_outofplace_with_scratch(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
scratch: &mut [Complex<T>],
) {
if self.len() == 0 {
return;
}
let required_scratch = self.get_outofplace_scratch_len();
if scratch.len() < required_scratch
|| input.len() < self.len()
|| output.len() != input.len()
{
// We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_outofplace(
self.len(),
input.len(),
output.len(),
self.get_outofplace_scratch_len(),
scratch.len(),
);
return; // Unreachable, because fft_error_outofplace asserts, but it helps codegen to put it here
}
let scratch = &mut scratch[..required_scratch];
let result = array_utils::iter_chunks_zipped(
input,
output,
self.len(),
|in_chunk, out_chunk| {
self.perform_fft_out_of_place(in_chunk, out_chunk, scratch)
},
);
if result.is_err() {
// We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
// but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_outofplace(
self.len(),
input.len(),
output.len(),
self.get_outofplace_scratch_len(),
scratch.len(),
);
}
}
fn process_with_scratch(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
if self.len() == 0 {
return;
}
let required_scratch = self.get_inplace_scratch_len();
if scratch.len() < required_scratch || buffer.len() < self.len() {
// We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_inplace(
self.len(),
buffer.len(),
self.get_inplace_scratch_len(),
scratch.len(),
);
return; // Unreachable, because fft_error_inplace asserts, but it helps codegen to put it here
}
let scratch = &mut scratch[..required_scratch];
let result = array_utils::iter_chunks(buffer, self.len(), |chunk| {
self.perform_fft_inplace(chunk, scratch)
});
if result.is_err() {
// We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
// but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
fft_error_inplace(
self.len(),
buffer.len(),
self.get_inplace_scratch_len(),
scratch.len(),
);
}
}
#[inline(always)]
fn get_inplace_scratch_len(&self) -> usize {
$inplace_scratch_len_fn(self)
}
#[inline(always)]
fn get_outofplace_scratch_len(&self) -> usize {
$out_of_place_scratch_len_fn(self)
}
}
impl<T: FftNum> Length for $struct_name<T> {
#[inline(always)]
fn len(&self) -> usize {
$len_fn(self)
}
}
impl<T: FftNum> Direction for $struct_name<T> {
#[inline(always)]
fn fft_direction(&self) -> FftDirection {
self.direction
}
}
};
}
*/
#[cfg(test)]
mod unit_tests {
use core::arch::x86_64::*;
#[test]
fn test_calc_f32() {
unsafe {
let a = _mm_set_ps(1.0, 1.0, 1.0, 1.0);
let b = _mm_set_ps(2.0, 2.0, 2.0, 2.0);
let c = _mm_set_ps(3.0, 3.0, 3.0, 3.0);
let d = _mm_set_ps(4.0, 4.0, 4.0, 4.0);
let e = _mm_set_ps(5.0, 5.0, 5.0, 5.0);
let f = _mm_set_ps(6.0, 6.0, 6.0, 6.0);
let g = _mm_set_ps(7.0, 7.0, 7.0, 7.0);
let h = _mm_set_ps(8.0, 8.0, 8.0, 8.0);
let i = _mm_set_ps(9.0, 9.0, 9.0, 9.0);
let expected: f32 = 1.0 + 2.0 - 3.0 + 4.0 - 5.0 + 6.0 - 7.0 - 8.0 + 9.0;
let res = calc_f32!(a + b - c + d - e + f - g - h + i);
let sum = std::mem::transmute::<__m128, [f32; 4]>(res);
assert_eq!(sum[0], expected);
assert_eq!(sum[1], expected);
assert_eq!(sum[2], expected);
assert_eq!(sum[3], expected);
}
}
#[test]
fn test_calc_f64() {
unsafe {
let a = _mm_set_pd(1.0, 1.0);
let b = _mm_set_pd(2.0, 2.0);
let c = _mm_set_pd(3.0, 3.0);
let d = _mm_set_pd(4.0, 4.0);
let e = _mm_set_pd(5.0, 5.0);
let f = _mm_set_pd(6.0, 6.0);
let g = _mm_set_pd(7.0, 7.0);
let h = _mm_set_pd(8.0, 8.0);
let i = _mm_set_pd(9.0, 9.0);
let expected: f64 = 1.0 + 2.0 - 3.0 + 4.0 - 5.0 + 6.0 - 7.0 - 8.0 + 9.0;
let res = calc_f64!(a + b - c + d - e + f - g - h + i);
let sum = std::mem::transmute::<__m128d, [f64; 2]>(res);
assert_eq!(sum[0], expected);
assert_eq!(sum[1], expected);
}
}
}