rustfft/avx/
avx_raders.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
use std::convert::TryInto;
use std::sync::Arc;
use std::{any::TypeId, arch::x86_64::*};

use num_complex::Complex;
use num_integer::{div_ceil, Integer};
use num_traits::Zero;
use primal_check::miller_rabin;
use strength_reduce::StrengthReducedUsize;

use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{array_utils, FftDirection};
use crate::{math_utils, twiddles};
use crate::{Direction, Fft, FftNum, Length};

use super::avx_vector;
use super::{
    avx_vector::{AvxArray, AvxArrayMut, AvxVector, AvxVector128, AvxVector256},
    AvxNum,
};

// This struct wraps the necessary data to compute (a * b) % divisor, where b and divisor are determined at runtime but rarely change, and a changes on every call.
// It's written using AVX2 instructions and assumes the input a are 64-bit integers, and has a restriction that each a, b, and divisor must be 31-bit numbers or smaller.
#[derive(Clone)]
struct VectorizedMultiplyMod {
    b: __m256i,
    divisor: __m256i,
    intermediate: __m256i,
}

impl VectorizedMultiplyMod {
    #[target_feature(enable = "avx")]
    unsafe fn new(b: u32, divisor: u32) -> Self {
        assert!(
            divisor.leading_zeros() > 0,
            "divisor must be less than {}, got {}",
            1 << 31,
            divisor
        );

        let b = b % divisor;
        let intermediate = ((b as i64) << 32) / divisor as i64;

        Self {
            b: _mm256_set1_epi64x(b as i64),
            divisor: _mm256_set1_epi64x(divisor as i64),
            intermediate: _mm256_set1_epi64x(intermediate),
        }
    }

    // Input: 4 unsigned 64-bit numbers, each less than 2^30
    // Output: (x * multiplier) % divisor for each x in input
    #[allow(unused)]
    #[inline(always)]
    unsafe fn mul_rem(&self, a: __m256i) -> __m256i {
        // Pretty hacky, but we need to prove to the compiler that each entry of the divisor is a 32-bit number, by blending the divisor vector with zeroes in the upper bits of each number.
        // If we don't do this manually, the compiler will do it anyways, but only for _mm256_mul_epu32, not for the _mm256_sub_epi64 correction step at the end
        // That inconstistency results in sub-optimal codegen where the compiler inserts extra code to handle the case where divisor is 64-bit. It also results in using one more register than necessary.
        // Since we know that can't happen, we can placate the compiler by explicitly zeroing the upper 32 bit of each divisor and relying on the compiler to lift it out of the loop.
        let masked_divisor = _mm256_blend_epi32(self.divisor, _mm256_setzero_si256(), 0xAA);

        // compute the integer quotient of (a * b) / divisor. Our precomputed intermediate value lets us skip the expensive division via arithmetic strength reduction
        let quotient = _mm256_srli_epi64(_mm256_mul_epu32(a, self.intermediate), 32);

        // Now we can compute numerator - quotient * divisor to get the remanider
        let numerator = _mm256_mul_epu32(a, self.b);
        let quotient_product = _mm256_mul_epu32(quotient, masked_divisor);

        // Standard remainder formula: remainder = numerator - quotient * divisor
        let remainder = _mm256_sub_epi64(numerator, quotient_product);

        // it's possible for the "remainder" to end up between divisor and 2 * divisor. so we'll subtract divisor from remainder, which will make some of the result negative
        // We can then use the subtracted result as the input to a blendv. Sadly avx doesn't have a blendv_epi32 or blendv_epi64, so we're gonna do blendv_pd instead
        // this works because blendv looks at the uppermost bit to decide which variable to use, and for a two's complement i64, the upper most bit is 1 when the number is negative!
        // So when the subtraction result is negative, the uppermost bit is 1, which means the blend will choose the second param, which is the unsubtracted remainder
        let casted_remainder = _mm256_castsi256_pd(remainder);
        let subtracted_remainder = _mm256_castsi256_pd(_mm256_sub_epi64(remainder, masked_divisor));
        let wrapped_remainder = _mm256_castpd_si256(_mm256_blendv_pd(
            subtracted_remainder,
            casted_remainder,
            subtracted_remainder,
        ));
        wrapped_remainder
    }
}

/// Implementation of Rader's Algorithm, using AVX2 instructions.
///
/// This algorithm computes a prime-sized FFT in O(nlogn) time. It does this by converting this size n FFT into a
/// size (n - 1) which is guaranteed to be composite.
///
/// The worst case for this algorithm is when (n - 1) is 2 * prime, resulting in a
/// [Cunningham Chain](https://en.wikipedia.org/wiki/Cunningham_chain)
///
/// Rader's Algorithm is relatively expensive compared to other FFT algorithms. Benchmarking shows that it is up to
/// an order of magnitude slower than similar composite sizes.
pub struct RadersAvx2<A: AvxNum, T> {
    input_index_multiplier: VectorizedMultiplyMod,
    input_index_init: __m256i,

    output_index_mapping: Box<[__m128i]>,
    twiddles: Box<[A::VectorType]>,

    inner_fft: Arc<dyn Fft<T>>,

    len: usize,

    inplace_scratch_len: usize,
    outofplace_scratch_len: usize,
    direction: FftDirection,

    _phantom: std::marker::PhantomData<T>,
}

impl<A: AvxNum, T: FftNum> RadersAvx2<A, T> {
    /// Preallocates necessary arrays and precomputes necessary data to efficiently compute the FFT
    /// Returns Ok(instance) if this machine has the required instruction sets ("avx", "fma", and "avx2"), Err() if some instruction sets are missing
    ///
    /// # Panics
    /// Panics if `inner_fft_len() + 1` is not a prime number.
    #[inline]
    pub fn new(inner_fft: Arc<dyn Fft<T>>) -> Result<Self, ()> {
        // Internal sanity check: Make sure that A == T.
        // This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
        // It would be cool if we could do this as a static_assert instead
        let id_a = TypeId::of::<A>();
        let id_t = TypeId::of::<T>();
        assert_eq!(id_a, id_t);

        let has_avx = is_x86_feature_detected!("avx");
        let has_avx2 = is_x86_feature_detected!("avx2");
        let has_fma = is_x86_feature_detected!("fma");
        if has_avx && has_avx2 && has_fma {
            // Safety: new_with_avx2 requires the "avx" feature set. Since we know it's present, we're safe
            Ok(unsafe { Self::new_with_avx(inner_fft) })
        } else {
            Err(())
        }
    }

    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(inner_fft: Arc<dyn Fft<T>>) -> Self {
        let inner_fft_len = inner_fft.len();
        let len = inner_fft_len + 1;
        assert!(miller_rabin(len as u64), "For raders algorithm, inner_fft.len() + 1 must be prime. Expected prime number, got {} + 1 = {}", inner_fft_len, len);

        let direction = inner_fft.fft_direction();
        let reduced_len = StrengthReducedUsize::new(len);

        // compute the primitive root and its inverse for this size
        let primitive_root = math_utils::primitive_root(len as u64).unwrap() as usize;

        // compute the multiplicative inverse of primative_root mod len and vice versa.
        // i64::extended_gcd will compute both the inverse of left mod right, and the inverse of right mod left, but we're only goingto use one of them
        // the primtive root inverse might be negative, if so make it positive by wrapping
        let gcd_data = i64::extended_gcd(&(primitive_root as i64), &(len as i64));
        let primitive_root_inverse = if gcd_data.x >= 0 {
            gcd_data.x
        } else {
            gcd_data.x + len as i64
        } as usize;

        // precompute the coefficients to use inside the process method
        let inner_fft_scale = T::one() / T::from_usize(inner_fft_len).unwrap();
        let mut inner_fft_input = vec![Complex::zero(); inner_fft_len];
        let mut twiddle_input = 1;
        for input_cell in &mut inner_fft_input {
            let twiddle = twiddles::compute_twiddle(twiddle_input, len, direction);
            *input_cell = twiddle * inner_fft_scale;

            twiddle_input = (twiddle_input * primitive_root_inverse) % reduced_len;
        }

        let required_inner_scratch = inner_fft.get_inplace_scratch_len();
        let extra_inner_scratch = if required_inner_scratch <= inner_fft_len {
            0
        } else {
            required_inner_scratch
        };

        //precompute a FFT of our reordered twiddle factors
        let mut inner_fft_scratch = vec![Zero::zero(); required_inner_scratch];
        inner_fft.process_with_scratch(&mut inner_fft_input, &mut inner_fft_scratch);

        // When computing the FFT, we'll want this array to be pre-conjugated, so conjugate it. at the same time, convert it to vectors for convenient use later.
        let conjugation_mask =
            AvxVector256::broadcast_complex_elements(Complex::new(A::zero(), -A::zero()));

        let inner_fft_multiplier: Box<[_]> = {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(&mut inner_fft_input);

            transmuted_inner_input
                .chunks(A::VectorType::COMPLEX_PER_VECTOR)
                .map(|chunk| {
                    let chunk_vector = match chunk.len() {
                        1 => chunk.load_partial1_complex(0).zero_extend(),
                        2 => {
                            if chunk.len() == A::VectorType::COMPLEX_PER_VECTOR {
                                chunk.load_complex(0)
                            } else {
                                chunk.load_partial2_complex(0).zero_extend()
                            }
                        }
                        3 => chunk.load_partial3_complex(0),
                        4 => chunk.load_complex(0),
                        _ => unreachable!(),
                    };
                    AvxVector::xor(chunk_vector, conjugation_mask) // compute our conjugation by xoring our data with a precomputed mask
                })
                .collect()
        };

        // Set up the data for our input index remapping computation
        const NUM_POWERS: usize = 5;
        let mut root_powers = [0; NUM_POWERS];
        let mut current_power = 1;
        for i in 0..NUM_POWERS {
            root_powers[i] = current_power;
            current_power = (current_power * primitive_root) % reduced_len;
        }

        let (input_index_multiplier, input_index_init) = if A::VectorType::COMPLEX_PER_VECTOR == 4 {
            (
                VectorizedMultiplyMod::new(root_powers[4] as u32, len as u32),
                _mm256_loadu_si256(root_powers.as_ptr().add(1) as *const __m256i),
            )
        } else {
            let duplicated_powers = [
                root_powers[1],
                root_powers[1],
                root_powers[2],
                root_powers[2],
            ];
            (
                VectorizedMultiplyMod::new(root_powers[2] as u32, len as u32),
                _mm256_loadu_si256(duplicated_powers.as_ptr() as *const __m256i),
            )
        };

        // Set up our output index remapping. Ideally we could compute the output indexes on the fly, but the output reindexing requires scatter, which doesn't exist until avx-512
        // Instead, we can invert the scatter indexes to be gather indexes. But if there's an algorithmic way to compute this, I don't know what it is --
        // so we won't be able to compute it on the fly with some sort of VectorizedMultiplyMod thing. Instead, we're going to precompute the inverted mapping and gather from that mapping.
        // We want enough elements in our array to fill out an entire set of vectors so that we don't have to deal with any partial indexes etc.
        let mapping_size = 1 + div_ceil(len, A::VectorType::COMPLEX_PER_VECTOR)
            * A::VectorType::COMPLEX_PER_VECTOR;
        let mut output_mapping_inverse: Vec<i32> = vec![0; mapping_size];
        let mut output_index = 1;
        for i in 1..len {
            output_index = (output_index * primitive_root_inverse) % reduced_len;
            output_mapping_inverse[output_index] = i.try_into().unwrap();
        }

        // the actual vector of indexes depends on whether we're f32 or f64
        let output_index_mapping = if A::VectorType::COMPLEX_PER_VECTOR == 4 {
            (&output_mapping_inverse[1..])
                .chunks_exact(A::VectorType::COMPLEX_PER_VECTOR)
                .map(|chunk| _mm_loadu_si128(chunk.as_ptr() as *const __m128i))
                .collect::<Box<[__m128i]>>()
        } else {
            (&output_mapping_inverse[1..])
                .chunks_exact(A::VectorType::COMPLEX_PER_VECTOR)
                .map(|chunk| {
                    let duplicated_indexes = [chunk[0], chunk[0], chunk[1], chunk[1]];
                    _mm_loadu_si128(duplicated_indexes.as_ptr() as *const __m128i)
                })
                .collect::<Box<[__m128i]>>()
        };
        Self {
            input_index_multiplier,
            input_index_init,

            output_index_mapping,

            inner_fft: inner_fft,
            twiddles: inner_fft_multiplier,

            len,

            inplace_scratch_len: len + extra_inner_scratch,
            outofplace_scratch_len: extra_inner_scratch,
            direction,

            _phantom: std::marker::PhantomData,
        }
    }

    // Do the necessary setup for rader's algorithm: Reorder the inputs into the output buffer, gather a sum of all inputs. Return the first input, and the aum of all inputs
    #[target_feature(enable = "avx2", enable = "avx", enable = "fma")]
    unsafe fn prepare_raders(&self, input: &[Complex<A>], output: &mut [Complex<A>]) {
        let mut indexes = self.input_index_init;

        let index_multiplier = self.input_index_multiplier.clone();

        // loop over the output array and use AVX gathers to reorder data from the input
        let mut chunks_iter =
            (&mut output[1..]).chunks_exact_mut(A::VectorType::COMPLEX_PER_VECTOR);
        for mut chunk in chunks_iter.by_ref() {
            let gathered_elements =
                A::VectorType::gather_complex_avx2_index64(input.as_ptr(), indexes);

            // advance our indexes
            indexes = index_multiplier.mul_rem(indexes);

            // Store this chunk
            chunk.store_complex(gathered_elements, 0);
        }

        // at this point, we either have 0 or 2 remaining elements to gather. because we know our length ends in 1 or 3. so when we subtract 1 for the inner FFT, that gives us 0 or 2
        let mut output_remainder = chunks_iter.into_remainder();
        if output_remainder.len() == 2 {
            let half_data = AvxVector128::gather64_complex_avx2(
                input.as_ptr(),
                _mm256_castsi256_si128(indexes),
            );

            // store the remainder in the last chunk
            output_remainder.store_partial2_complex(half_data, 0);
        }
    }

    // Do the necessary finalization for rader's algorithm: Reorder the inputs into the output buffer, conjugating the input as we go, and add the first input value to every output value
    #[target_feature(enable = "avx2", enable = "avx", enable = "fma")]
    unsafe fn finalize_raders(&self, input: &[Complex<A>], output: &mut [Complex<A>]) {
        // We need to conjugate elements as a part of the finalization step, and sadly we can't roll it into any other instructions. So we'll do it via an xor.
        let conjugation_mask =
            AvxVector256::broadcast_complex_elements(Complex::new(A::zero(), -A::zero()));

        let mut chunks_iter =
            (&mut output[1..]).chunks_exact_mut(A::VectorType::COMPLEX_PER_VECTOR);
        for (i, mut chunk) in chunks_iter.by_ref().enumerate() {
            let index_chunk = *self.output_index_mapping.get_unchecked(i);
            let gathered_elements =
                A::VectorType::gather_complex_avx2_index32(input.as_ptr(), index_chunk);

            let conjugated_elements = AvxVector::xor(gathered_elements, conjugation_mask);
            chunk.store_complex(conjugated_elements, 0);
        }

        // at this point, we either have 0 or 2 remaining elements to gather. because we know our length ends in 1 or 3. so when we subtract 1 for the inner FFT, that gives us 0 or 2
        let mut output_remainder = chunks_iter.into_remainder();
        if output_remainder.len() == 2 {
            let index_chunk = *self
                .output_index_mapping
                .get_unchecked(self.output_index_mapping.len() - 1);
            let half_data = AvxVector128::gather32_complex_avx2(input.as_ptr(), index_chunk);

            let conjugated_elements = AvxVector::xor(half_data, conjugation_mask.lo());
            output_remainder.store_partial2_complex(conjugated_elements, 0);
        }
    }

    fn perform_fft_out_of_place(
        &self,
        input: &mut [Complex<T>],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) {
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_input: &mut [Complex<A>] = array_utils::workaround_transmute_mut(input);
            let transmuted_output: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(output);
            self.prepare_raders(transmuted_input, transmuted_output)
        }

        let (first_input, inner_input) = input.split_first_mut().unwrap();
        let (first_output, inner_output) = output.split_first_mut().unwrap();

        // perform the first of two inner FFTs
        let inner_scratch = if scratch.len() > 0 {
            &mut scratch[..]
        } else {
            &mut inner_input[..]
        };
        self.inner_fft
            .process_with_scratch(inner_output, inner_scratch);

        // inner_output[0] now contains the sum of elements 1..n. we want the sum of all inputs, so all we need to do is add the first input
        *first_output = inner_output[0] + *first_input;

        // multiply the inner result with our cached setup data
        // also conjugate every entry. this sets us up to do an inverse FFT
        // (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);
            let transmuted_inner_output: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_output);
            avx_vector::pairwise_complex_mul_conjugated(
                transmuted_inner_output,
                transmuted_inner_input,
                &self.twiddles,
            )
        };

        // We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
        // Of course, we have to conjugate it, just like we conjugated the complex multiplied above
        inner_input[0] = inner_input[0] + first_input.conj();

        // execute the second FFT
        let inner_scratch = if scratch.len() > 0 {
            scratch
        } else {
            &mut inner_output[..]
        };
        self.inner_fft
            .process_with_scratch(inner_input, inner_scratch);

        // copy the final values into the output, reordering as we go
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_input: &mut [Complex<A>] = array_utils::workaround_transmute_mut(input);
            let transmuted_output: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(output);
            self.finalize_raders(transmuted_input, transmuted_output);
        }
    }
    fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
        let (scratch, extra_scratch) = scratch.split_at_mut(self.len());
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_scratch: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(scratch);
            let transmuted_buffer: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(buffer);
            self.prepare_raders(transmuted_buffer, transmuted_scratch)
        }

        let first_input = buffer[0];

        let truncated_scratch = &mut scratch[1..];

        // perform the first of two inner FFTs
        let inner_scratch = if extra_scratch.len() > 0 {
            extra_scratch
        } else {
            &mut buffer[..]
        };
        self.inner_fft
            .process_with_scratch(truncated_scratch, inner_scratch);

        // truncated_scratch[0] now contains the sum of elements 1..n. we want the sum of all inputs, so all we need to do is add the first input
        let first_output = first_input + truncated_scratch[0];

        // multiply the inner result with our cached setup data
        // also conjugate every entry. this sets us up to do an inverse FFT
        // (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_scratch: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(truncated_scratch);
            avx_vector::pairwise_complex_mul_assign_conjugated(transmuted_scratch, &self.twiddles)
        };

        // We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
        // Of course, we have to conjugate it, just like we conjugated the complex multiplied above
        truncated_scratch[0] = truncated_scratch[0] + first_input.conj();

        // execute the second FFT
        self.inner_fft
            .process_with_scratch(truncated_scratch, inner_scratch);

        // copy the final values into the output, reordering as we go
        buffer[0] = first_output;
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_scratch: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(scratch);
            let transmuted_buffer: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(buffer);
            self.finalize_raders(transmuted_scratch, transmuted_buffer);
        }
    }
}
boilerplate_avx_fft!(
    RadersAvx2,
    |this: &RadersAvx2<_, _>| this.len,
    |this: &RadersAvx2<_, _>| this.inplace_scratch_len,
    |this: &RadersAvx2<_, _>| this.outofplace_scratch_len
);

#[cfg(test)]
mod unit_tests {
    use num_traits::Float;
    use rand::distributions::uniform::SampleUniform;

    use super::*;
    use crate::algorithm::Dft;
    use crate::test_utils::check_fft_algorithm;
    use std::sync::Arc;

    #[test]
    fn test_raders_avx_f32() {
        for len in 3..100 {
            if miller_rabin(len as u64) {
                test_raders_with_length::<f32>(len, FftDirection::Forward);
                test_raders_with_length::<f32>(len, FftDirection::Inverse);
            }
        }
    }

    #[test]
    fn test_raders_avx_f64() {
        for len in 3..100 {
            if miller_rabin(len as u64) {
                test_raders_with_length::<f64>(len, FftDirection::Forward);
                test_raders_with_length::<f64>(len, FftDirection::Inverse);
            }
        }
    }

    fn test_raders_with_length<T: AvxNum + Float + SampleUniform>(
        len: usize,
        direction: FftDirection,
    ) {
        let inner_fft = Arc::new(Dft::new(len - 1, direction));
        let fft = RadersAvx2::<T, T>::new(inner_fft).unwrap();

        check_fft_algorithm::<T>(&fft, len, direction);
    }
}