rustfft/avx/avx_raders.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
use std::convert::TryInto;
use std::sync::Arc;
use std::{any::TypeId, arch::x86_64::*};
use num_complex::Complex;
use num_integer::{div_ceil, Integer};
use num_traits::Zero;
use primal_check::miller_rabin;
use strength_reduce::StrengthReducedUsize;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{array_utils, FftDirection};
use crate::{math_utils, twiddles};
use crate::{Direction, Fft, FftNum, Length};
use super::avx_vector;
use super::{
avx_vector::{AvxArray, AvxArrayMut, AvxVector, AvxVector128, AvxVector256},
AvxNum,
};
// This struct wraps the necessary data to compute (a * b) % divisor, where b and divisor are determined at runtime but rarely change, and a changes on every call.
// It's written using AVX2 instructions and assumes the input a are 64-bit integers, and has a restriction that each a, b, and divisor must be 31-bit numbers or smaller.
#[derive(Clone)]
struct VectorizedMultiplyMod {
b: __m256i,
divisor: __m256i,
intermediate: __m256i,
}
impl VectorizedMultiplyMod {
#[target_feature(enable = "avx")]
unsafe fn new(b: u32, divisor: u32) -> Self {
assert!(
divisor.leading_zeros() > 0,
"divisor must be less than {}, got {}",
1 << 31,
divisor
);
let b = b % divisor;
let intermediate = ((b as i64) << 32) / divisor as i64;
Self {
b: _mm256_set1_epi64x(b as i64),
divisor: _mm256_set1_epi64x(divisor as i64),
intermediate: _mm256_set1_epi64x(intermediate),
}
}
// Input: 4 unsigned 64-bit numbers, each less than 2^30
// Output: (x * multiplier) % divisor for each x in input
#[allow(unused)]
#[inline(always)]
unsafe fn mul_rem(&self, a: __m256i) -> __m256i {
// Pretty hacky, but we need to prove to the compiler that each entry of the divisor is a 32-bit number, by blending the divisor vector with zeroes in the upper bits of each number.
// If we don't do this manually, the compiler will do it anyways, but only for _mm256_mul_epu32, not for the _mm256_sub_epi64 correction step at the end
// That inconstistency results in sub-optimal codegen where the compiler inserts extra code to handle the case where divisor is 64-bit. It also results in using one more register than necessary.
// Since we know that can't happen, we can placate the compiler by explicitly zeroing the upper 32 bit of each divisor and relying on the compiler to lift it out of the loop.
let masked_divisor = _mm256_blend_epi32(self.divisor, _mm256_setzero_si256(), 0xAA);
// compute the integer quotient of (a * b) / divisor. Our precomputed intermediate value lets us skip the expensive division via arithmetic strength reduction
let quotient = _mm256_srli_epi64(_mm256_mul_epu32(a, self.intermediate), 32);
// Now we can compute numerator - quotient * divisor to get the remanider
let numerator = _mm256_mul_epu32(a, self.b);
let quotient_product = _mm256_mul_epu32(quotient, masked_divisor);
// Standard remainder formula: remainder = numerator - quotient * divisor
let remainder = _mm256_sub_epi64(numerator, quotient_product);
// it's possible for the "remainder" to end up between divisor and 2 * divisor. so we'll subtract divisor from remainder, which will make some of the result negative
// We can then use the subtracted result as the input to a blendv. Sadly avx doesn't have a blendv_epi32 or blendv_epi64, so we're gonna do blendv_pd instead
// this works because blendv looks at the uppermost bit to decide which variable to use, and for a two's complement i64, the upper most bit is 1 when the number is negative!
// So when the subtraction result is negative, the uppermost bit is 1, which means the blend will choose the second param, which is the unsubtracted remainder
let casted_remainder = _mm256_castsi256_pd(remainder);
let subtracted_remainder = _mm256_castsi256_pd(_mm256_sub_epi64(remainder, masked_divisor));
let wrapped_remainder = _mm256_castpd_si256(_mm256_blendv_pd(
subtracted_remainder,
casted_remainder,
subtracted_remainder,
));
wrapped_remainder
}
}
/// Implementation of Rader's Algorithm, using AVX2 instructions.
///
/// This algorithm computes a prime-sized FFT in O(nlogn) time. It does this by converting this size n FFT into a
/// size (n - 1) which is guaranteed to be composite.
///
/// The worst case for this algorithm is when (n - 1) is 2 * prime, resulting in a
/// [Cunningham Chain](https://en.wikipedia.org/wiki/Cunningham_chain)
///
/// Rader's Algorithm is relatively expensive compared to other FFT algorithms. Benchmarking shows that it is up to
/// an order of magnitude slower than similar composite sizes.
pub struct RadersAvx2<A: AvxNum, T> {
input_index_multiplier: VectorizedMultiplyMod,
input_index_init: __m256i,
output_index_mapping: Box<[__m128i]>,
twiddles: Box<[A::VectorType]>,
inner_fft: Arc<dyn Fft<T>>,
len: usize,
inplace_scratch_len: usize,
outofplace_scratch_len: usize,
direction: FftDirection,
_phantom: std::marker::PhantomData<T>,
}
impl<A: AvxNum, T: FftNum> RadersAvx2<A, T> {
/// Preallocates necessary arrays and precomputes necessary data to efficiently compute the FFT
/// Returns Ok(instance) if this machine has the required instruction sets ("avx", "fma", and "avx2"), Err() if some instruction sets are missing
///
/// # Panics
/// Panics if `inner_fft_len() + 1` is not a prime number.
#[inline]
pub fn new(inner_fft: Arc<dyn Fft<T>>) -> Result<Self, ()> {
// Internal sanity check: Make sure that A == T.
// This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
// It would be cool if we could do this as a static_assert instead
let id_a = TypeId::of::<A>();
let id_t = TypeId::of::<T>();
assert_eq!(id_a, id_t);
let has_avx = is_x86_feature_detected!("avx");
let has_avx2 = is_x86_feature_detected!("avx2");
let has_fma = is_x86_feature_detected!("fma");
if has_avx && has_avx2 && has_fma {
// Safety: new_with_avx2 requires the "avx" feature set. Since we know it's present, we're safe
Ok(unsafe { Self::new_with_avx(inner_fft) })
} else {
Err(())
}
}
#[target_feature(enable = "avx")]
unsafe fn new_with_avx(inner_fft: Arc<dyn Fft<T>>) -> Self {
let inner_fft_len = inner_fft.len();
let len = inner_fft_len + 1;
assert!(miller_rabin(len as u64), "For raders algorithm, inner_fft.len() + 1 must be prime. Expected prime number, got {} + 1 = {}", inner_fft_len, len);
let direction = inner_fft.fft_direction();
let reduced_len = StrengthReducedUsize::new(len);
// compute the primitive root and its inverse for this size
let primitive_root = math_utils::primitive_root(len as u64).unwrap() as usize;
// compute the multiplicative inverse of primative_root mod len and vice versa.
// i64::extended_gcd will compute both the inverse of left mod right, and the inverse of right mod left, but we're only goingto use one of them
// the primtive root inverse might be negative, if so make it positive by wrapping
let gcd_data = i64::extended_gcd(&(primitive_root as i64), &(len as i64));
let primitive_root_inverse = if gcd_data.x >= 0 {
gcd_data.x
} else {
gcd_data.x + len as i64
} as usize;
// precompute the coefficients to use inside the process method
let inner_fft_scale = T::one() / T::from_usize(inner_fft_len).unwrap();
let mut inner_fft_input = vec![Complex::zero(); inner_fft_len];
let mut twiddle_input = 1;
for input_cell in &mut inner_fft_input {
let twiddle = twiddles::compute_twiddle(twiddle_input, len, direction);
*input_cell = twiddle * inner_fft_scale;
twiddle_input = (twiddle_input * primitive_root_inverse) % reduced_len;
}
let required_inner_scratch = inner_fft.get_inplace_scratch_len();
let extra_inner_scratch = if required_inner_scratch <= inner_fft_len {
0
} else {
required_inner_scratch
};
//precompute a FFT of our reordered twiddle factors
let mut inner_fft_scratch = vec![Zero::zero(); required_inner_scratch];
inner_fft.process_with_scratch(&mut inner_fft_input, &mut inner_fft_scratch);
// When computing the FFT, we'll want this array to be pre-conjugated, so conjugate it. at the same time, convert it to vectors for convenient use later.
let conjugation_mask =
AvxVector256::broadcast_complex_elements(Complex::new(A::zero(), -A::zero()));
let inner_fft_multiplier: Box<[_]> = {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_inner_input: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(&mut inner_fft_input);
transmuted_inner_input
.chunks(A::VectorType::COMPLEX_PER_VECTOR)
.map(|chunk| {
let chunk_vector = match chunk.len() {
1 => chunk.load_partial1_complex(0).zero_extend(),
2 => {
if chunk.len() == A::VectorType::COMPLEX_PER_VECTOR {
chunk.load_complex(0)
} else {
chunk.load_partial2_complex(0).zero_extend()
}
}
3 => chunk.load_partial3_complex(0),
4 => chunk.load_complex(0),
_ => unreachable!(),
};
AvxVector::xor(chunk_vector, conjugation_mask) // compute our conjugation by xoring our data with a precomputed mask
})
.collect()
};
// Set up the data for our input index remapping computation
const NUM_POWERS: usize = 5;
let mut root_powers = [0; NUM_POWERS];
let mut current_power = 1;
for i in 0..NUM_POWERS {
root_powers[i] = current_power;
current_power = (current_power * primitive_root) % reduced_len;
}
let (input_index_multiplier, input_index_init) = if A::VectorType::COMPLEX_PER_VECTOR == 4 {
(
VectorizedMultiplyMod::new(root_powers[4] as u32, len as u32),
_mm256_loadu_si256(root_powers.as_ptr().add(1) as *const __m256i),
)
} else {
let duplicated_powers = [
root_powers[1],
root_powers[1],
root_powers[2],
root_powers[2],
];
(
VectorizedMultiplyMod::new(root_powers[2] as u32, len as u32),
_mm256_loadu_si256(duplicated_powers.as_ptr() as *const __m256i),
)
};
// Set up our output index remapping. Ideally we could compute the output indexes on the fly, but the output reindexing requires scatter, which doesn't exist until avx-512
// Instead, we can invert the scatter indexes to be gather indexes. But if there's an algorithmic way to compute this, I don't know what it is --
// so we won't be able to compute it on the fly with some sort of VectorizedMultiplyMod thing. Instead, we're going to precompute the inverted mapping and gather from that mapping.
// We want enough elements in our array to fill out an entire set of vectors so that we don't have to deal with any partial indexes etc.
let mapping_size = 1 + div_ceil(len, A::VectorType::COMPLEX_PER_VECTOR)
* A::VectorType::COMPLEX_PER_VECTOR;
let mut output_mapping_inverse: Vec<i32> = vec![0; mapping_size];
let mut output_index = 1;
for i in 1..len {
output_index = (output_index * primitive_root_inverse) % reduced_len;
output_mapping_inverse[output_index] = i.try_into().unwrap();
}
// the actual vector of indexes depends on whether we're f32 or f64
let output_index_mapping = if A::VectorType::COMPLEX_PER_VECTOR == 4 {
(&output_mapping_inverse[1..])
.chunks_exact(A::VectorType::COMPLEX_PER_VECTOR)
.map(|chunk| _mm_loadu_si128(chunk.as_ptr() as *const __m128i))
.collect::<Box<[__m128i]>>()
} else {
(&output_mapping_inverse[1..])
.chunks_exact(A::VectorType::COMPLEX_PER_VECTOR)
.map(|chunk| {
let duplicated_indexes = [chunk[0], chunk[0], chunk[1], chunk[1]];
_mm_loadu_si128(duplicated_indexes.as_ptr() as *const __m128i)
})
.collect::<Box<[__m128i]>>()
};
Self {
input_index_multiplier,
input_index_init,
output_index_mapping,
inner_fft: inner_fft,
twiddles: inner_fft_multiplier,
len,
inplace_scratch_len: len + extra_inner_scratch,
outofplace_scratch_len: extra_inner_scratch,
direction,
_phantom: std::marker::PhantomData,
}
}
// Do the necessary setup for rader's algorithm: Reorder the inputs into the output buffer, gather a sum of all inputs. Return the first input, and the aum of all inputs
#[target_feature(enable = "avx2", enable = "avx", enable = "fma")]
unsafe fn prepare_raders(&self, input: &[Complex<A>], output: &mut [Complex<A>]) {
let mut indexes = self.input_index_init;
let index_multiplier = self.input_index_multiplier.clone();
// loop over the output array and use AVX gathers to reorder data from the input
let mut chunks_iter =
(&mut output[1..]).chunks_exact_mut(A::VectorType::COMPLEX_PER_VECTOR);
for mut chunk in chunks_iter.by_ref() {
let gathered_elements =
A::VectorType::gather_complex_avx2_index64(input.as_ptr(), indexes);
// advance our indexes
indexes = index_multiplier.mul_rem(indexes);
// Store this chunk
chunk.store_complex(gathered_elements, 0);
}
// at this point, we either have 0 or 2 remaining elements to gather. because we know our length ends in 1 or 3. so when we subtract 1 for the inner FFT, that gives us 0 or 2
let mut output_remainder = chunks_iter.into_remainder();
if output_remainder.len() == 2 {
let half_data = AvxVector128::gather64_complex_avx2(
input.as_ptr(),
_mm256_castsi256_si128(indexes),
);
// store the remainder in the last chunk
output_remainder.store_partial2_complex(half_data, 0);
}
}
// Do the necessary finalization for rader's algorithm: Reorder the inputs into the output buffer, conjugating the input as we go, and add the first input value to every output value
#[target_feature(enable = "avx2", enable = "avx", enable = "fma")]
unsafe fn finalize_raders(&self, input: &[Complex<A>], output: &mut [Complex<A>]) {
// We need to conjugate elements as a part of the finalization step, and sadly we can't roll it into any other instructions. So we'll do it via an xor.
let conjugation_mask =
AvxVector256::broadcast_complex_elements(Complex::new(A::zero(), -A::zero()));
let mut chunks_iter =
(&mut output[1..]).chunks_exact_mut(A::VectorType::COMPLEX_PER_VECTOR);
for (i, mut chunk) in chunks_iter.by_ref().enumerate() {
let index_chunk = *self.output_index_mapping.get_unchecked(i);
let gathered_elements =
A::VectorType::gather_complex_avx2_index32(input.as_ptr(), index_chunk);
let conjugated_elements = AvxVector::xor(gathered_elements, conjugation_mask);
chunk.store_complex(conjugated_elements, 0);
}
// at this point, we either have 0 or 2 remaining elements to gather. because we know our length ends in 1 or 3. so when we subtract 1 for the inner FFT, that gives us 0 or 2
let mut output_remainder = chunks_iter.into_remainder();
if output_remainder.len() == 2 {
let index_chunk = *self
.output_index_mapping
.get_unchecked(self.output_index_mapping.len() - 1);
let half_data = AvxVector128::gather32_complex_avx2(input.as_ptr(), index_chunk);
let conjugated_elements = AvxVector::xor(half_data, conjugation_mask.lo());
output_remainder.store_partial2_complex(conjugated_elements, 0);
}
}
fn perform_fft_out_of_place(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
scratch: &mut [Complex<T>],
) {
unsafe {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_input: &mut [Complex<A>] = array_utils::workaround_transmute_mut(input);
let transmuted_output: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(output);
self.prepare_raders(transmuted_input, transmuted_output)
}
let (first_input, inner_input) = input.split_first_mut().unwrap();
let (first_output, inner_output) = output.split_first_mut().unwrap();
// perform the first of two inner FFTs
let inner_scratch = if scratch.len() > 0 {
&mut scratch[..]
} else {
&mut inner_input[..]
};
self.inner_fft
.process_with_scratch(inner_output, inner_scratch);
// inner_output[0] now contains the sum of elements 1..n. we want the sum of all inputs, so all we need to do is add the first input
*first_output = inner_output[0] + *first_input;
// multiply the inner result with our cached setup data
// also conjugate every entry. this sets us up to do an inverse FFT
// (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
unsafe {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_inner_input: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(inner_input);
let transmuted_inner_output: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(inner_output);
avx_vector::pairwise_complex_mul_conjugated(
transmuted_inner_output,
transmuted_inner_input,
&self.twiddles,
)
};
// We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
// Of course, we have to conjugate it, just like we conjugated the complex multiplied above
inner_input[0] = inner_input[0] + first_input.conj();
// execute the second FFT
let inner_scratch = if scratch.len() > 0 {
scratch
} else {
&mut inner_output[..]
};
self.inner_fft
.process_with_scratch(inner_input, inner_scratch);
// copy the final values into the output, reordering as we go
unsafe {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_input: &mut [Complex<A>] = array_utils::workaround_transmute_mut(input);
let transmuted_output: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(output);
self.finalize_raders(transmuted_input, transmuted_output);
}
}
fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
let (scratch, extra_scratch) = scratch.split_at_mut(self.len());
unsafe {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_scratch: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(scratch);
let transmuted_buffer: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(buffer);
self.prepare_raders(transmuted_buffer, transmuted_scratch)
}
let first_input = buffer[0];
let truncated_scratch = &mut scratch[1..];
// perform the first of two inner FFTs
let inner_scratch = if extra_scratch.len() > 0 {
extra_scratch
} else {
&mut buffer[..]
};
self.inner_fft
.process_with_scratch(truncated_scratch, inner_scratch);
// truncated_scratch[0] now contains the sum of elements 1..n. we want the sum of all inputs, so all we need to do is add the first input
let first_output = first_input + truncated_scratch[0];
// multiply the inner result with our cached setup data
// also conjugate every entry. this sets us up to do an inverse FFT
// (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
unsafe {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_scratch: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(truncated_scratch);
avx_vector::pairwise_complex_mul_assign_conjugated(transmuted_scratch, &self.twiddles)
};
// We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
// Of course, we have to conjugate it, just like we conjugated the complex multiplied above
truncated_scratch[0] = truncated_scratch[0] + first_input.conj();
// execute the second FFT
self.inner_fft
.process_with_scratch(truncated_scratch, inner_scratch);
// copy the final values into the output, reordering as we go
buffer[0] = first_output;
unsafe {
// Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
let transmuted_scratch: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(scratch);
let transmuted_buffer: &mut [Complex<A>] =
array_utils::workaround_transmute_mut(buffer);
self.finalize_raders(transmuted_scratch, transmuted_buffer);
}
}
}
boilerplate_avx_fft!(
RadersAvx2,
|this: &RadersAvx2<_, _>| this.len,
|this: &RadersAvx2<_, _>| this.inplace_scratch_len,
|this: &RadersAvx2<_, _>| this.outofplace_scratch_len
);
#[cfg(test)]
mod unit_tests {
use num_traits::Float;
use rand::distributions::uniform::SampleUniform;
use super::*;
use crate::algorithm::Dft;
use crate::test_utils::check_fft_algorithm;
use std::sync::Arc;
#[test]
fn test_raders_avx_f32() {
for len in 3..100 {
if miller_rabin(len as u64) {
test_raders_with_length::<f32>(len, FftDirection::Forward);
test_raders_with_length::<f32>(len, FftDirection::Inverse);
}
}
}
#[test]
fn test_raders_avx_f64() {
for len in 3..100 {
if miller_rabin(len as u64) {
test_raders_with_length::<f64>(len, FftDirection::Forward);
test_raders_with_length::<f64>(len, FftDirection::Inverse);
}
}
}
fn test_raders_with_length<T: AvxNum + Float + SampleUniform>(
len: usize,
direction: FftDirection,
) {
let inner_fft = Arc::new(Dft::new(len - 1, direction));
let fft = RadersAvx2::<T, T>::new(inner_fft).unwrap();
check_fft_algorithm::<T>(&fft, len, direction);
}
}