rustfft/avx/avx_planner.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
use std::sync::Arc;
use std::{any::TypeId, cmp::min};
use primal_check::miller_rabin;
use crate::algorithm::*;
use crate::common::FftNum;
use crate::math_utils::PartialFactors;
use crate::Fft;
use crate::{algorithm::butterflies::*, fft_cache::FftCache};
use super::*;
fn wrap_fft<T: FftNum>(butterfly: impl Fft<T> + 'static) -> Arc<dyn Fft<T>> {
Arc::new(butterfly) as Arc<dyn Fft<T>>
}
#[derive(Debug)]
enum MixedRadixBase {
// The base will be a butterfly algorithm
ButterflyBase(usize),
// The base will be an instance of Rader's Algorithm. That will require its own plan for the internal FFT, which we'll handle separately
RadersBase(usize),
// The base will be an instance of Bluestein's Algorithm. That will require its own plan for the internal FFT, which we'll handle separately.
// First usize is the base length, second usize is the inner FFT length
BluesteinsBase(usize, usize),
// The "base" is a FFT instance we already have cached
CacheBase(usize),
}
impl MixedRadixBase {
fn base_len(&self) -> usize {
match self {
Self::ButterflyBase(len) => *len,
Self::RadersBase(len) => *len,
Self::BluesteinsBase(len, _) => *len,
Self::CacheBase(len) => *len,
}
}
}
/// repreesnts a FFT plan, stored as a base FFT and a stack of MixedRadix*xn on top of it.
#[derive(Debug)]
pub struct MixedRadixPlan {
len: usize, // product of base and radixes
radixes: Vec<u8>, // stored from innermost to outermost
base: MixedRadixBase,
}
impl MixedRadixPlan {
fn new(base: MixedRadixBase, radixes: Vec<u8>) -> Self {
Self {
len: base.base_len() * radixes.iter().map(|r| *r as usize).product::<usize>(),
base,
radixes,
}
}
fn cached(cached_len: usize) -> Self {
Self {
len: cached_len,
base: MixedRadixBase::CacheBase(cached_len),
radixes: Vec::new(),
}
}
fn butterfly(butterfly_len: usize, radixes: Vec<u8>) -> Self {
Self::new(MixedRadixBase::ButterflyBase(butterfly_len), radixes)
}
fn push_radix(&mut self, radix: u8) {
self.radixes.push(radix);
self.len *= radix as usize;
}
fn push_radix_power(&mut self, radix: u8, power: u32) {
self.radixes
.extend(std::iter::repeat(radix).take(power as usize));
self.len *= (radix as usize).pow(power);
}
}
/// The AVX FFT planner creates new FFT algorithm instances which take advantage of the AVX instruction set.
///
/// Creating an instance of `FftPlannerAvx` requires the `avx` and `fma` instructions to be available on the current machine, and it requires RustFFT's
/// `avx` feature flag to be set. A few algorithms will use `avx2` if it's available, but it isn't required.
///
/// For the time being, AVX acceleration is black box, and AVX accelerated algorithms are not available without a planner. This may change in the future.
///
/// ~~~
/// // Perform a forward Fft of size 1234, accelerated by AVX
/// use std::sync::Arc;
/// use rustfft::{FftPlannerAvx, num_complex::Complex};
///
/// // If FftPlannerAvx::new() returns Ok(), we'll know AVX algorithms are available
/// // on this machine, and that RustFFT was compiled with the `avx` feature flag
/// if let Ok(mut planner) = FftPlannerAvx::new() {
/// let fft = planner.plan_fft_forward(1234);
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 1234];
/// fft.process(&mut buffer);
///
/// // The FFT instance returned by the planner has the type `Arc<dyn Fft<T>>`,
/// // where T is the numeric type, ie f32 or f64, so it's cheap to clone
/// let fft_clone = Arc::clone(&fft);
/// }
/// ~~~
///
/// If you plan on creating multiple FFT instances, it is recommended to re-use the same planner for all of them. This
/// is because the planner re-uses internal data across FFT instances wherever possible, saving memory and reducing
/// setup time. (FFT instances created with one planner will never re-use data and buffers with FFT instances created
/// by a different planner)
///
/// Each FFT instance owns [`Arc`s](std::sync::Arc) to its internal data, rather than borrowing it from the planner, so it's perfectly
/// safe to drop the planner after creating Fft instances.
pub struct FftPlannerAvx<T: FftNum> {
internal_planner: Box<dyn AvxPlannerInternalAPI<T>>,
}
impl<T: FftNum> FftPlannerAvx<T> {
/// Constructs a new `FftPlannerAvx` instance.
///
/// Returns `Ok(planner_instance)` if we're compiling for X86_64, AVX support was enabled in feature flags, and the current CPU supports the `avx` and `fma` CPU features.
/// Returns `Err(())` if AVX support is not available.
pub fn new() -> Result<Self, ()> {
// Eventually we might make AVX algorithms that don't also require FMA.
// If that happens, we can only check for AVX here? seems like a pretty low-priority addition
let has_avx = is_x86_feature_detected!("avx");
let has_fma = is_x86_feature_detected!("fma");
if has_avx && has_fma {
// Ideally, we would implement the planner with specialization.
// Specialization won't be on stable rust for a long time tohugh, so in the meantime, we can hack around it.
//
// The first step of the hack is to use TypeID to determine if T is f32, f64, or neither. If neither, we don't want to di any AVX acceleration
// If it's f32 or f64, then construct an internal type that has two generic parameters, one bounded on AvxNum, the other bounded on FftNum
//
// - A is bounded on the AvxNum trait, and is the type we use for any AVX computations. It has associated types for AVX vectors,
// associated constants for the number of elements per vector, etc.
// - T is bounded on the FftNum trait, and thus is the type that every FFT algorithm will recieve its input/output buffers in.
//
// An important snag relevant to the planner is that we have to box and type-erase the AvxNum bound,
// since the only other option is making the AvxNum bound a part of this struct's external API
//
// Another annoying snag with this setup is that we frequently have to transmute buffers from &mut [Complex<T>] to &mut [Complex<A>] or vice versa.
// We know this is safe because we assert everywhere that Type(A)==Type(T), so it's just a matter of "doing it right" every time.
// These transmutes are required because the FFT algorithm's input will come through the FFT trait, which may only be bounded by FftNum.
// So the buffers will have the type &mut [Complex<T>]. The problem comes in that all of our AVX computation tools are on the AvxNum trait.
//
// If we had specialization, we could easily convince the compilr that AvxNum and FftNum were different bounds on the same underlying type (IE f32 or f64)
// but without it, the compiler is convinced that they are different. So we use the transmute as a last-resort way to overcome this limitation.
//
// We keep both the A and T types around in all of our AVX-related structs so that we can cast between A and T whenever necessary.
let id_f32 = TypeId::of::<f32>();
let id_f64 = TypeId::of::<f64>();
let id_t = TypeId::of::<T>();
if id_t == id_f32 {
return Ok(Self {
internal_planner: Box::new(AvxPlannerInternal::<f32, T>::new()),
});
} else if id_t == id_f64 {
return Ok(Self {
internal_planner: Box::new(AvxPlannerInternal::<f64, T>::new()),
});
}
}
Err(())
}
/// Returns a `Fft` instance which uses AVX instructions to compute FFTs of size `len`.
///
/// If the provided `direction` is `FftDirection::Forward`, the returned instance will compute forward FFTs. If it's `FftDirection::Inverse`, it will compute inverse FFTs.
///
/// If this is called multiple times, the planner will attempt to re-use internal data between calls, reducing memory usage and FFT initialization time.
pub fn plan_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
self.internal_planner.plan_and_construct_fft(len, direction)
}
/// Returns a `Fft` instance which uses AVX instructions to compute forward FFTs of size `len`.
///
/// If this is called multiple times, the planner will attempt to re-use internal data between calls, reducing memory usage and FFT initialization time.
pub fn plan_fft_forward(&mut self, len: usize) -> Arc<dyn Fft<T>> {
self.plan_fft(len, FftDirection::Forward)
}
/// Returns a `Fft` instance which uses AVX instructions to compute inverse FFTs of size `len.
///
/// If this is called multiple times, the planner will attempt to re-use internal data between calls, reducing memory usage and FFT initialization time.
pub fn plan_fft_inverse(&mut self, len: usize) -> Arc<dyn Fft<T>> {
self.plan_fft(len, FftDirection::Inverse)
}
/// Returns a FFT plan without constructing it
#[allow(unused)]
pub(crate) fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan {
self.internal_planner.debug_plan_fft(len, direction)
}
}
trait AvxPlannerInternalAPI<T: FftNum>: Send {
fn plan_and_construct_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>>;
fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan;
}
struct AvxPlannerInternal<A: AvxNum, T: FftNum> {
cache: FftCache<T>,
_phantom: std::marker::PhantomData<A>,
}
impl<T: FftNum> AvxPlannerInternalAPI<T> for AvxPlannerInternal<f32, T> {
fn plan_and_construct_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
// Step 1: Create a plan for this FFT length.
let plan = self.plan_fft(len, direction, Self::plan_mixed_radix_base);
// Step 2: Construct the plan. If the base is rader's algorithm or bluestein's algorithm, this may call self.plan_and_construct_fft recursively!
self.construct_plan(
plan,
direction,
Self::construct_butterfly,
Self::plan_and_construct_fft,
)
}
fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan {
self.plan_fft(len, direction, Self::plan_mixed_radix_base)
}
}
impl<T: FftNum> AvxPlannerInternalAPI<T> for AvxPlannerInternal<f64, T> {
fn plan_and_construct_fft(&mut self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
// Step 1: Create a plan for this FFT length.
let plan = self.plan_fft(len, direction, Self::plan_mixed_radix_base);
// Step 2: Construct the plan. If the base is rader's algorithm or bluestein's algorithm, this may call self.plan_and_construct_fft recursively!
self.construct_plan(
plan,
direction,
Self::construct_butterfly,
Self::plan_and_construct_fft,
)
}
fn debug_plan_fft(&self, len: usize, direction: FftDirection) -> MixedRadixPlan {
self.plan_fft(len, direction, Self::plan_mixed_radix_base)
}
}
//-------------------------------------------------------------------
// f32-specific planning stuff
//-------------------------------------------------------------------
impl<T: FftNum> AvxPlannerInternal<f32, T> {
pub fn new() -> Self {
// Internal sanity check: Make sure that T == f32.
// This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
// It would be cool if we could do this as a static_assert instead
let id_f32 = TypeId::of::<f32>();
let id_t = TypeId::of::<T>();
assert_eq!(id_f32, id_t);
Self {
cache: FftCache::new(),
_phantom: std::marker::PhantomData,
}
}
fn plan_mixed_radix_base(&self, len: usize, factors: &PartialFactors) -> MixedRadixPlan {
// if we have non-fast-path factors, use them as our base FFT length, and we will have to use either rader's algorithm or bluestein's algorithm as our base
if factors.get_other_factors() > 1 {
let other_factors = factors.get_other_factors();
// First, if the "other factors" are a butterfly, use that as the butterfly
if self.is_butterfly(other_factors) {
return MixedRadixPlan::butterfly(other_factors, vec![]);
}
// We can only use rader's if `other_factors` is prime
if miller_rabin(other_factors as u64) {
// len is prime, so we can use Rader's Algorithm as a base. Whether or not that's a good idea is a different story
// Rader's Algorithm is only faster in a few narrow cases.
// as a heuristic, only use rader's algorithm if its inner FFT can be computed entirely without bluestein's or rader's
// We're intentionally being too conservative here. Otherwise we'd be recursively applying a heuristic, and repeated heuristic failures could stack to make a rader's chain significantly slower.
// If we were writing a measuring planner, expanding this heuristic and measuring its effectiveness would be an opportunity for up to 2x performance gains.
let inner_factors = PartialFactors::compute(other_factors - 1);
if self.is_butterfly(inner_factors.get_other_factors()) {
// We only have factors of 2,3,5,7, and 11. If we don't have AVX2, we also have to exclude factors of 5 and 7 and 11, because avx2 gives us enough headroom for the overhead of those to not be a problem
if is_x86_feature_detected!("avx2")
|| (inner_factors.product_power2power3() == len - 1)
{
return MixedRadixPlan::new(
MixedRadixBase::RadersBase(other_factors),
vec![],
);
}
}
}
// At this point, we know we're using bluestein's algorithm for the base. Next step is to plan the inner size we'll use for bluestein's algorithm.
let inner_bluesteins_len =
self.plan_bluesteins(other_factors, |(_len, factor2, factor3)| {
if *factor2 > 16 && *factor3 < 3 {
// surprisingly, pure powers of 2 have a pretty steep dropoff in speed after 65536.
// the algorithm is designed to generate candidadtes larger than baseline_candidate, so if we hit a large power of 2, there should be more after it that we can skip to
return false;
}
true
});
return MixedRadixPlan::new(
MixedRadixBase::BluesteinsBase(other_factors, inner_bluesteins_len),
vec![],
);
}
// If this FFT size is a butterfly, use that
if self.is_butterfly(len) {
return MixedRadixPlan::butterfly(len, vec![]);
}
// If the power2 * power3 component of this FFT is a butterfly and not too small, return that
let power2power3 = factors.product_power2power3();
if power2power3 > 4 && self.is_butterfly(power2power3) {
return MixedRadixPlan::butterfly(power2power3, vec![]);
}
// most of this code is heuristics assuming FFTs of a minimum size. if the FFT is below that minimum size, the heuristics break down.
// so the first thing we're going to do is hardcode the plan for osme specific sizes where we know the heuristics won't be enough
let hardcoded_base = match power2power3 {
// 3 * 2^n special cases
96 => Some(MixedRadixPlan::butterfly(32, vec![3])), // 2^5 * 3
192 => Some(MixedRadixPlan::butterfly(48, vec![4])), // 2^6 * 3
1536 => Some(MixedRadixPlan::butterfly(48, vec![8, 4])), // 2^8 * 3
// 9 * 2^n special cases
18 => Some(MixedRadixPlan::butterfly(3, vec![6])), // 2 * 3^2
144 => Some(MixedRadixPlan::butterfly(36, vec![4])), // 2^4 * 3^2
_ => None,
};
if let Some(hardcoded) = hardcoded_base {
return hardcoded;
}
if factors.get_power2() >= 5 {
match factors.get_power3() {
// if this FFT is a power of 2, our strategy here is to tweak the butterfly to free us up to do an 8xn chain
0 => match factors.get_power2() % 3 {
0 => MixedRadixPlan::butterfly(512, vec![]),
1 => MixedRadixPlan::butterfly(256, vec![]),
2 => MixedRadixPlan::butterfly(256, vec![]),
_ => unreachable!(),
},
// if this FFT is 3 times a power of 2, our strategy here is to tweak butterflies to make it easier to set up a 8xn chain
1 => match factors.get_power2() % 3 {
0 => MixedRadixPlan::butterfly(64, vec![12, 16]),
1 => MixedRadixPlan::butterfly(48, vec![]),
2 => MixedRadixPlan::butterfly(64, vec![]),
_ => unreachable!(),
},
// if this FFT is 9 or greater times a power of 2, just use 72. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
// but across all the benchmarking i've done, 72 seems like the best default that will get us the best plan in 95% of the cases
// 64, 54, and 48 are occasionally faster, although i haven't been able to discern a pattern.
_ => MixedRadixPlan::butterfly(72, vec![]),
}
} else if factors.get_power3() >= 3 {
// Our FFT is a power of 3 times a low power of 2. A high level summary of our strategy is that we want to pick a base that will
// A: consume all factors of 2, and B: leave us with an even power of 3, so that we can do a 9xn chain.
match factors.get_power2() {
0 => MixedRadixPlan::butterfly(27, vec![]),
1 => MixedRadixPlan::butterfly(54, vec![]),
2 => match factors.get_power3() % 2 {
0 => MixedRadixPlan::butterfly(36, vec![]),
1 => MixedRadixPlan::butterfly(if len < 1000 { 36 } else { 12 }, vec![]),
_ => unreachable!(),
},
3 => match factors.get_power3() % 2 {
0 => MixedRadixPlan::butterfly(72, vec![]),
1 => MixedRadixPlan::butterfly(
if factors.get_power3() > 7 { 24 } else { 72 },
vec![],
),
_ => unreachable!(),
},
4 => match factors.get_power3() % 2 {
0 => MixedRadixPlan::butterfly(
if factors.get_power3() > 6 { 16 } else { 72 },
vec![],
),
1 => MixedRadixPlan::butterfly(
if factors.get_power3() > 9 { 48 } else { 72 },
vec![],
),
_ => unreachable!(),
},
// if this FFT is 32 or greater times a power of 3, just use 72. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
// but across all the benchmarking i've done, 72 seems like the best default that will get us the best plan in 95% of the cases
// 64, 54, and 48 are occasionally faster, although i haven't been able to discern a pattern.
_ => MixedRadixPlan::butterfly(72, vec![]),
}
}
// If this FFT has powers of 11, 7, or 5, use that
else if factors.get_power11() > 0 {
MixedRadixPlan::butterfly(11, vec![])
} else if factors.get_power7() > 0 {
MixedRadixPlan::butterfly(7, vec![])
} else if factors.get_power5() > 0 {
MixedRadixPlan::butterfly(5, vec![])
} else {
panic!(
"Couldn't find a base for FFT size {}, factors={:?}",
len, factors
)
}
}
fn is_butterfly(&self, len: usize) -> bool {
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 24, 27, 29, 31, 32, 36, 48,
54, 64, 72, 128, 256, 512,
]
.contains(&len)
}
fn construct_butterfly(&self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
match len {
0 | 1 => wrap_fft(Dft::new(len, direction)),
2 => wrap_fft(Butterfly2::new(direction)),
3 => wrap_fft(Butterfly3::new(direction)),
4 => wrap_fft(Butterfly4::new(direction)),
5 => wrap_fft(Butterfly5Avx::new(direction).unwrap()),
6 => wrap_fft(Butterfly6::new(direction)),
7 => wrap_fft(Butterfly7Avx::new(direction).unwrap()),
8 => wrap_fft(Butterfly8Avx::new(direction).unwrap()),
9 => wrap_fft(Butterfly9Avx::new(direction).unwrap()),
11 => wrap_fft(Butterfly11Avx::new(direction).unwrap()),
12 => wrap_fft(Butterfly12Avx::new(direction).unwrap()),
13 => wrap_fft(Butterfly13::new(direction)),
16 => wrap_fft(Butterfly16Avx::new(direction).unwrap()),
17 => wrap_fft(Butterfly17::new(direction)),
19 => wrap_fft(Butterfly19::new(direction)),
23 => wrap_fft(Butterfly23::new(direction)),
24 => wrap_fft(Butterfly24Avx::new(direction).unwrap()),
27 => wrap_fft(Butterfly27Avx::new(direction).unwrap()),
29 => wrap_fft(Butterfly29::new(direction)),
31 => wrap_fft(Butterfly31::new(direction)),
32 => wrap_fft(Butterfly32Avx::new(direction).unwrap()),
36 => wrap_fft(Butterfly36Avx::new(direction).unwrap()),
48 => wrap_fft(Butterfly48Avx::new(direction).unwrap()),
54 => wrap_fft(Butterfly54Avx::new(direction).unwrap()),
64 => wrap_fft(Butterfly64Avx::new(direction).unwrap()),
72 => wrap_fft(Butterfly72Avx::new(direction).unwrap()),
128 => wrap_fft(Butterfly128Avx::new(direction).unwrap()),
256 => wrap_fft(Butterfly256Avx::new(direction).unwrap()),
512 => wrap_fft(Butterfly512Avx::new(direction).unwrap()),
_ => panic!("Invalid butterfly len: {}", len),
}
}
}
//-------------------------------------------------------------------
// f64-specific planning stuff
//-------------------------------------------------------------------
impl<T: FftNum> AvxPlannerInternal<f64, T> {
pub fn new() -> Self {
// Internal sanity check: Make sure that T == f64.
// This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
// It would be cool if we could do this as a static_assert instead
let id_f64 = TypeId::of::<f64>();
let id_t = TypeId::of::<T>();
assert_eq!(id_f64, id_t);
Self {
cache: FftCache::new(),
_phantom: std::marker::PhantomData,
}
}
fn plan_mixed_radix_base(&self, len: usize, factors: &PartialFactors) -> MixedRadixPlan {
// if we have a factor that can't be computed with 2xn 3xn etc, we'll have to compute it with bluestein's or rader's, so use that as the base
if factors.get_other_factors() > 1 {
let other_factors = factors.get_other_factors();
// First, if the "other factors" are a butterfly, use that as the butterfly
if self.is_butterfly(other_factors) {
return MixedRadixPlan::butterfly(other_factors, vec![]);
}
// We can only use rader's if `other_factors` is prime
if miller_rabin(other_factors as u64) {
// len is prime, so we can use Rader's Algorithm as a base. Whether or not that's a good idea is a different story
// Rader's Algorithm is only faster in a few narrow cases.
// as a heuristic, only use rader's algorithm if its inner FFT can be computed entirely without bluestein's or rader's
// We're intentionally being too conservative here. Otherwise we'd be recursively applying a heuristic, and repeated heuristic failures could stack to make a rader's chain significantly slower.
// If we were writing a measuring planner, expanding this heuristic and measuring its effectiveness would be an opportunity for up to 2x performance gains.
let inner_factors = PartialFactors::compute(other_factors - 1);
if self.is_butterfly(inner_factors.get_other_factors()) {
// We only have factors of 2,3,5,7, and 11. If we don't have AVX2, we also have to exclude factors of 5 and 7 and 11, because avx2 gives us enough headroom for the overhead of those to not be a problem
if is_x86_feature_detected!("avx2")
|| (inner_factors.product_power2power3() == len - 1)
{
return MixedRadixPlan::new(
MixedRadixBase::RadersBase(other_factors),
vec![],
);
}
}
}
// At this point, we know we're using bluestein's algorithm for the base. Next step is to plan the inner size we'll use for bluestein's algorithm.
let inner_bluesteins_len =
self.plan_bluesteins(other_factors, |(_len, factor2, factor3)| {
if *factor3 < 1 && *factor2 > 13 {
return false;
}
if *factor3 < 4 && *factor2 > 14 {
return false;
}
true
});
return MixedRadixPlan::new(
MixedRadixBase::BluesteinsBase(other_factors, inner_bluesteins_len),
vec![],
);
}
// If this FFT size is a butterfly, use that
if self.is_butterfly(len) {
return MixedRadixPlan::butterfly(len, vec![]);
}
// If the power2 * power3 component of this FFT is a butterfly and not too small, return that
let power2power3 = factors.product_power2power3();
if power2power3 > 4 && self.is_butterfly(power2power3) {
return MixedRadixPlan::butterfly(power2power3, vec![]);
}
// most of this code is heuristics assuming FFTs of a minimum size. if the FFT is below that minimum size, the heuristics break down.
// so the first thing we're going to do is hardcode the plan for osme specific sizes where we know the heuristics won't be enough
let hardcoded_base = match power2power3 {
// 2^n special cases
64 => Some(MixedRadixPlan::butterfly(16, vec![4])), // 2^6
// 3 * 2^n special cases
48 => Some(MixedRadixPlan::butterfly(12, vec![4])), // 3 * 2^4
96 => Some(MixedRadixPlan::butterfly(12, vec![8])), // 3 * 2^5
768 => Some(MixedRadixPlan::butterfly(12, vec![8, 8])), // 3 * 2^8
// 9 * 2^n special cases
72 => Some(MixedRadixPlan::butterfly(24, vec![3])), // 2^3 * 3^2
288 => Some(MixedRadixPlan::butterfly(32, vec![9])), // 2^5 * 3^2
// 4 * 3^n special cases
108 => Some(MixedRadixPlan::butterfly(18, vec![6])), // 2^4 * 3^2
_ => None,
};
if let Some(hardcoded) = hardcoded_base {
return hardcoded;
}
if factors.get_power2() >= 4 {
match factors.get_power3() {
// if this FFT is a power of 2, our strategy here is to tweak the butterfly to free us up to do an 8xn chain
0 => match factors.get_power2() % 3 {
0 => MixedRadixPlan::butterfly(512, vec![]),
1 => MixedRadixPlan::butterfly(128, vec![]),
2 => MixedRadixPlan::butterfly(256, vec![]),
_ => unreachable!(),
},
// if this FFT is 3 times a power of 2, our strategy here is to tweak butterflies to make it easier to set up a 8xn chain
1 => match factors.get_power2() % 3 {
0 => MixedRadixPlan::butterfly(24, vec![]),
1 => MixedRadixPlan::butterfly(32, vec![12]),
2 => MixedRadixPlan::butterfly(32, vec![12, 16]),
_ => unreachable!(),
},
// if this FFT is 9 times a power of 2, our strategy here is to tweak butterflies to make it easier to set up a 8xn chain
2 => match factors.get_power2() % 3 {
0 => MixedRadixPlan::butterfly(36, vec![16]),
1 => MixedRadixPlan::butterfly(36, vec![]),
2 => MixedRadixPlan::butterfly(18, vec![]),
_ => unreachable!(),
},
// this FFT is 27 or greater times a power of two. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
// but across all the benchmarking i've done, 36 seems like the best default that will get us the best plan in 95% of the cases
// 32 is rarely faster, although i haven't been able to discern a pattern.
_ => MixedRadixPlan::butterfly(36, vec![]),
}
} else if factors.get_power3() >= 3 {
// Our FFT is a power of 3 times a low power of 2
match factors.get_power2() {
0 => match factors.get_power3() % 2 {
0 => MixedRadixPlan::butterfly(
if factors.get_power3() > 10 { 9 } else { 27 },
vec![],
),
1 => MixedRadixPlan::butterfly(27, vec![]),
_ => unreachable!(),
},
1 => MixedRadixPlan::butterfly(18, vec![]),
2 => match factors.get_power3() % 2 {
0 => MixedRadixPlan::butterfly(36, vec![]),
1 => MixedRadixPlan::butterfly(
if factors.get_power3() > 10 { 36 } else { 18 },
vec![],
),
_ => unreachable!(),
},
3 => MixedRadixPlan::butterfly(18, vec![]),
// this FFT is 16 or greater times a power of three. As you might expect, in this vast field of options, what is optimal becomes a lot more muddy and situational
// but across all the benchmarking i've done, 36 seems like the best default that will get us the best plan in 95% of the cases
// 32 is rarely faster, although i haven't been able to discern a pattern.
_ => MixedRadixPlan::butterfly(36, vec![]),
}
}
// If this FFT has powers of 11, 7, or 5, use that
else if factors.get_power11() > 0 {
MixedRadixPlan::butterfly(11, vec![])
} else if factors.get_power7() > 0 {
MixedRadixPlan::butterfly(7, vec![])
} else if factors.get_power5() > 0 {
MixedRadixPlan::butterfly(5, vec![])
} else {
panic!(
"Couldn't find a base for FFT size {}, factors={:?}",
len, factors
)
}
}
fn is_butterfly(&self, len: usize) -> bool {
[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 23, 24, 27, 29, 31, 32, 36,
64, 128, 256, 512,
]
.contains(&len)
}
fn construct_butterfly(&self, len: usize, direction: FftDirection) -> Arc<dyn Fft<T>> {
match len {
0 | 1 => wrap_fft(Dft::new(len, direction)),
2 => wrap_fft(Butterfly2::new(direction)),
3 => wrap_fft(Butterfly3::new(direction)),
4 => wrap_fft(Butterfly4::new(direction)),
5 => wrap_fft(Butterfly5Avx64::new(direction).unwrap()),
6 => wrap_fft(Butterfly6::new(direction)),
7 => wrap_fft(Butterfly7Avx64::new(direction).unwrap()),
8 => wrap_fft(Butterfly8Avx64::new(direction).unwrap()),
9 => wrap_fft(Butterfly9Avx64::new(direction).unwrap()),
11 => wrap_fft(Butterfly11Avx64::new(direction).unwrap()),
12 => wrap_fft(Butterfly12Avx64::new(direction).unwrap()),
13 => wrap_fft(Butterfly13::new(direction)),
16 => wrap_fft(Butterfly16Avx64::new(direction).unwrap()),
17 => wrap_fft(Butterfly17::new(direction)),
18 => wrap_fft(Butterfly18Avx64::new(direction).unwrap()),
19 => wrap_fft(Butterfly19::new(direction)),
23 => wrap_fft(Butterfly23::new(direction)),
24 => wrap_fft(Butterfly24Avx64::new(direction).unwrap()),
27 => wrap_fft(Butterfly27Avx64::new(direction).unwrap()),
29 => wrap_fft(Butterfly29::new(direction)),
31 => wrap_fft(Butterfly31::new(direction)),
32 => wrap_fft(Butterfly32Avx64::new(direction).unwrap()),
36 => wrap_fft(Butterfly36Avx64::new(direction).unwrap()),
64 => wrap_fft(Butterfly64Avx64::new(direction).unwrap()),
128 => wrap_fft(Butterfly128Avx64::new(direction).unwrap()),
256 => wrap_fft(Butterfly256Avx64::new(direction).unwrap()),
512 => wrap_fft(Butterfly512Avx64::new(direction).unwrap()),
_ => panic!("Invalid butterfly len: {}", len),
}
}
}
//-------------------------------------------------------------------
// type-agnostic planning stuff
//-------------------------------------------------------------------
impl<A: AvxNum, T: FftNum> AvxPlannerInternal<A, T> {
// Given a length, return a plan for how this FFT should be computed
fn plan_fft(
&self,
len: usize,
direction: FftDirection,
base_fn: impl FnOnce(&Self, usize, &PartialFactors) -> MixedRadixPlan,
) -> MixedRadixPlan {
// First step: If this size is already cached, return it directly
if self.cache.contains_fft(len, direction) {
return MixedRadixPlan::cached(len);
}
// We have butterflies for everything below 10, so if it's below 10, just skip the factorization etc
// Notably, this step is *required* if the len is 0, since we can't compute a prime factorization for zero
if len < 10 {
return MixedRadixPlan::butterfly(len, Vec::new());
}
// This length is not cached, so we have to come up with a new plan. The first step is to find a suitable base.
let factors = PartialFactors::compute(len);
let base = base_fn(self, len, &factors);
// it's possible that the base planner plans out the whole FFT. it's guaranteed if `len` is a prime number, or if it's a butterfly, for example
let uncached_plan = if base.len == len {
base
} else {
// We have some mixed radix steps to compute! Compute the factors that need to computed by mixed radix steps,
let radix_factors = factors
.divide_by(&PartialFactors::compute(base.len))
.unwrap_or_else(|| {
panic!(
"Invalid base for FFT length={}, base={:?}, base radixes={:?}",
len, base.base, base.radixes
)
});
self.plan_mixed_radix(radix_factors, base)
};
// Last step: We have a full FFT plan, but some of the steps of that plan may have been cached. If they have, use the largest cached step as the base.
self.replan_with_cache(uncached_plan, direction)
}
// Takes a plan and an algorithm cache, and replaces steps of the plan with cached steps, if possible
fn replan_with_cache(&self, plan: MixedRadixPlan, direction: FftDirection) -> MixedRadixPlan {
enum CacheLocation {
None,
Base,
Radix(usize, usize), // First value is the length of the cached FFT, and second value is the index in the radix array
}
let mut largest_cached_len = CacheLocation::None;
let base_len = plan.base.base_len();
let mut current_len = base_len;
// Check if the cache contains the base
if self.cache.contains_fft(current_len, direction) {
largest_cached_len = CacheLocation::Base;
}
// Walk up the radix chain, checking if rthe cache contains each step
for (i, radix) in plan.radixes.iter().enumerate() {
current_len *= *radix as usize;
if self.cache.contains_fft(current_len, direction) {
largest_cached_len = CacheLocation::Radix(current_len, i);
}
}
// If we found a cached length within the plan, update the plan to account for the cache
match largest_cached_len {
CacheLocation::None => plan,
CacheLocation::Base => {
MixedRadixPlan::new(MixedRadixBase::CacheBase(base_len), plan.radixes)
}
CacheLocation::Radix(cached_len, cached_index) => {
// We know that `plan.radixes[cached_index]` is the largest cache value, and `cached_len` will be our new base legth
// Drop every element from `plan.radixes` from up to and including cached_index
let mut chain = plan.radixes;
chain.drain(0..=cached_index);
MixedRadixPlan::new(MixedRadixBase::CacheBase(cached_len), chain)
}
}
}
// given a set of factors, compute how many iterations of 12xn and 16xn we should plan for. Returns (k, j) for 12^k and 6^j
fn plan_power12_power6(radix_factors: &PartialFactors) -> (u32, u32) {
// it's helpful to think of this process as rewriting the FFT length as powers of our radixes
// the fastest FFT we could possibly compute is 8^n, because the 8xn algorithm is blazing fast. 9xn and 12xn are also in the top tier for speed, so those 3 algorithms are what we will aim for
// Specifically, we want to find a combination of 8, 9, and 12, that will "consume" all factors of 2 and 3, without having any leftovers
// Unfortunately, most FFTs don't come in the form 8^n * 9^m * 12^k
// Thankfully, 6xn is also reasonably fast, so we can use 6xn to strip away factors.
// This function's job will be to divide radix_factors into 8^n * 9^m * 12^k * 6^j, which minimizes j, then maximizes k
// we're going to hypothetically add as many 12's to our plan as possible, keeping track of how many 6's were required to balance things out
// we can also compute this analytically with modular arithmetic, but that technique only works when the FFT is above a minimum size, but this loop+array technique always works
let max_twelves = min(radix_factors.get_power2() / 2, radix_factors.get_power3());
let mut required_sixes = [None; 4]; // only track 6^0 through 6^3. 6^4 can be converted into 12^2 * 9, and 6^5 can be converted into 12 * 8 * 9 * 9
for hypothetical_twelve_power in 0..(max_twelves + 1) {
let hypothetical_twos = radix_factors.get_power2() - hypothetical_twelve_power * 2;
let hypothetical_threes = radix_factors.get_power3() - hypothetical_twelve_power;
// figure out how many sixes we would need to leave our FFT at 8^n * 9^m via modular arithmetic, and write to that index of our twelves_per_sixes array
let sixes = match (hypothetical_twos % 3, hypothetical_threes % 2) {
(0, 0) => Some(0),
(1, 1) => Some(1),
(2, 0) => Some(2),
(0, 1) => Some(3),
(1, 0) => None, // it would take 4 sixes, which can be replaced by 2 twelves, so we'll hit it in a later loop (if we have that many factors)
(2, 1) => None, // it would take 5 sixes, but note that 12 is literally 2^2 * 3^1, so instead of applying 5 sixes, we can apply a single 12
(_, _) => unreachable!(),
};
// if we can bring the FFT into range for the fast path with sixes, record so in the required_sixes array
// but make sure the number of sixes we're going to apply actually fits into our available factors
if let Some(sixes) = sixes {
if sixes <= hypothetical_twos && sixes <= hypothetical_threes {
required_sixes[sixes as usize] = Some(hypothetical_twelve_power)
}
}
}
// required_sixes[i] now contains the largest power of twelve that we can apply, given that we also apply 6^i
// we want to apply as many of 12 as possible, so take the array element with the largest non-None element
// note that it's possible (and very likely) that either power_twelve or power_six is zero, or both of them are zero! this will happen for a pure power of 2 or power of 3 FFT, for example
let (power_twelve, mut power_six) = required_sixes
.iter()
.enumerate()
.filter_map(|(i, maybe_twelve)| maybe_twelve.map(|twelve| (twelve, i as u32)))
.fold(
(0, 0),
|best, current| if current.0 >= best.0 { current } else { best },
);
// special case: if we have exactly one factor of 2 and at least one factor of 3, unconditionally apply a factor of 6 to get rid of the 2
if radix_factors.get_power2() == 1 && radix_factors.get_power3() > 0 {
power_six = 1;
}
// special case: if we have a single factor of 3 and more than one factor of 2 (and we don't have any twelves), unconditionally apply a factor of 6 to get rid of the 3
if radix_factors.get_power2() > 1 && radix_factors.get_power3() == 1 && power_twelve == 0 {
power_six = 1;
}
(power_twelve, power_six)
}
fn plan_mixed_radix(
&self,
mut radix_factors: PartialFactors,
mut plan: MixedRadixPlan,
) -> MixedRadixPlan {
// if we can complete the FFT with a single radix, do it
if [2, 3, 4, 5, 6, 7, 8, 9, 12, 16].contains(&radix_factors.product()) {
plan.push_radix(radix_factors.product() as u8)
} else {
// Compute how many powers of 12 and powers of 6 we want to strip away
let (power_twelve, power_six) = Self::plan_power12_power6(&radix_factors);
// divide our powers of 12 and 6 out of our radix factors
radix_factors = radix_factors
.divide_by(&PartialFactors::compute(
6usize.pow(power_six) * 12usize.pow(power_twelve),
))
.unwrap();
// now that we know the 12 and 6 factors, the plan array can be computed in descending radix size
if radix_factors.get_power2() % 3 == 1 && radix_factors.get_power2() > 1 {
// our factors of 2 might not quite be a power of 8 -- our plan_power12_power6 function tried its best, but if there are very few factors of 3, it can't help.
// if we're 2 * 8^N, benchmarking shows that applying a 16 before our chain of 8s is very fast.
plan.push_radix(16);
radix_factors = radix_factors
.divide_by(&PartialFactors::compute(16))
.unwrap();
}
plan.push_radix_power(12, power_twelve);
plan.push_radix_power(11, radix_factors.get_power11());
plan.push_radix_power(9, radix_factors.get_power3() / 2);
plan.push_radix_power(8, radix_factors.get_power2() / 3);
plan.push_radix_power(7, radix_factors.get_power7());
plan.push_radix_power(6, power_six);
plan.push_radix_power(5, radix_factors.get_power5());
if radix_factors.get_power2() % 3 == 2 {
// our factors of 2 might not quite be a power of 8 -- our plan_power12_power6 function tried its best, but if we are a power of 2, it can't help.
// if we're 4 * 8^N, benchmarking shows that applying a 4 to the end our chain of 8s is very fast.
plan.push_radix(4);
}
if radix_factors.get_power3() % 2 == 1 {
// our factors of 3 might not quite be a power of 9 -- our plan_power12_power6 function tried its best, but if we are a power of 3, it can't help.
// if we're 3 * 9^N, our only choice is to add an 8xn step
plan.push_radix(3);
}
if radix_factors.get_power2() % 3 == 1 {
// our factors of 2 might not quite be a power of 8. We tried to correct this with a 16 radix and 4 radix, but as a last resort, apply a 2. 2 is very slow, but it's better than not computing the FFT
plan.push_radix(2);
}
// measurement opportunity: is it faster to let the plan_power12_power6 function put a 4 on the end instead of relying on all 8's?
// measurement opportunity: is it faster to slap a 16 on top of the stack?
// measurement opportunity: if our plan_power12_power6 function adds both 12s and sixes, is it faster to drop combinations of 12+6 down to 8+9?
};
plan
}
// Constructs and returns a FFT instance from a FFT plan.
// If the base is a butterfly, it will call the provided `construct_butterfly_fn` to do so.
// If constructing the base requires constructing an inner FFT (IE bluetein's or rader's algorithm), it will call the provided `inner_fft_fn` to construct it
fn construct_plan(
&mut self,
plan: MixedRadixPlan,
direction: FftDirection,
construct_butterfly_fn: impl FnOnce(&Self, usize, FftDirection) -> Arc<dyn Fft<T>>,
inner_fft_fn: impl FnOnce(&mut Self, usize, FftDirection) -> Arc<dyn Fft<T>>,
) -> Arc<dyn Fft<T>> {
let mut fft = match plan.base {
MixedRadixBase::CacheBase(len) => self.cache.get(len, direction).unwrap(),
MixedRadixBase::ButterflyBase(len) => {
let butterfly_instance = construct_butterfly_fn(self, len, direction);
// Cache this FFT instance for future calls to `plan_fft`
self.cache.insert(&butterfly_instance);
butterfly_instance
}
MixedRadixBase::RadersBase(len) => {
// Rader's Algorithm requires an inner FFT of size len - 1
let inner_fft = inner_fft_fn(self, len - 1, direction);
// try to construct our AVX2 rader's algorithm. If that fails (probably because the machine we're running on doesn't have AVX2), fall back to scalar
let raders_instance =
if let Ok(raders_avx) = RadersAvx2::<A, T>::new(Arc::clone(&inner_fft)) {
wrap_fft(raders_avx)
} else {
wrap_fft(RadersAlgorithm::new(inner_fft))
};
// Cache this FFT instance for future calls to `plan_fft`
self.cache.insert(&raders_instance);
raders_instance
}
MixedRadixBase::BluesteinsBase(len, inner_fft_len) => {
// Bluestein's has an inner FFT of arbitrary size. But we've already planned it, so just use what we planned
let inner_fft = inner_fft_fn(self, inner_fft_len, direction);
// try to construct our AVX2 rader's algorithm. If that fails (probably because the machine we're running on doesn't have AVX2), fall back to scalar
let bluesteins_instance =
wrap_fft(BluesteinsAvx::<A, T>::new(len, inner_fft).unwrap());
// Cache this FFT instance for future calls to `plan_fft`
self.cache.insert(&bluesteins_instance);
bluesteins_instance
}
};
// We have constructed our base. Now, construct the radix chain.
for radix in plan.radixes {
fft = match radix {
2 => wrap_fft(MixedRadix2xnAvx::<A, T>::new(fft).unwrap()),
3 => wrap_fft(MixedRadix3xnAvx::<A, T>::new(fft).unwrap()),
4 => wrap_fft(MixedRadix4xnAvx::<A, T>::new(fft).unwrap()),
5 => wrap_fft(MixedRadix5xnAvx::<A, T>::new(fft).unwrap()),
6 => wrap_fft(MixedRadix6xnAvx::<A, T>::new(fft).unwrap()),
7 => wrap_fft(MixedRadix7xnAvx::<A, T>::new(fft).unwrap()),
8 => wrap_fft(MixedRadix8xnAvx::<A, T>::new(fft).unwrap()),
9 => wrap_fft(MixedRadix9xnAvx::<A, T>::new(fft).unwrap()),
11 => wrap_fft(MixedRadix11xnAvx::<A, T>::new(fft).unwrap()),
12 => wrap_fft(MixedRadix12xnAvx::<A, T>::new(fft).unwrap()),
16 => wrap_fft(MixedRadix16xnAvx::<A, T>::new(fft).unwrap()),
_ => unreachable!(),
};
// Cache this FFT instance for future calls to `plan_fft`
self.cache.insert(&fft);
}
fft
}
// Plan and return the inner size to be used with Bluestein's Algorithm
// Calls `filter_fn` on result candidates, giving the caller the opportunity to reject certain sizes
fn plan_bluesteins(
&self,
len: usize,
filter_fn: impl FnMut(&&(usize, u32, u32)) -> bool,
) -> usize {
assert!(len > 1); // Internal consistency check: The logic in this method doesn't work for a length of 1
// Bluestein's computes a FFT of size `len` by reorganizing it as a FFT of ANY size greater than or equal to len * 2 - 1
// an obvious choice is the next power of two larger than len * 2 - 1, but if we can find a smaller FFT that will go faster, we can save a lot of time.
// We can very efficiently compute almost any 2^n * 3^m, so we're going to search for all numbers of the form 2^n * 3^m that lie between len * 2 - 1 and the next power of two.
let min_len = len * 2 - 1;
let baseline_candidate = min_len.checked_next_power_of_two().unwrap();
// our algorithm here is to start with our next power of 2, and repeatedly divide by 2 and multiply by 3, trying to keep our value in range
let mut bluesteins_candidates = Vec::new();
let mut candidate = baseline_candidate;
let mut factor2 = candidate.trailing_zeros();
let mut factor3 = 0;
let min_factor2 = 2; // benchmarking shows that while 3^n and 2 * 3^n are fast, they're typically slower than the next-higher candidate, so don't bother generating them
while factor2 >= min_factor2 {
// if this candidate length isn't too small, add it to our candidates list
if candidate >= min_len {
bluesteins_candidates.push((candidate, factor2, factor3));
}
// if the candidate is too large, divide it by 2. if it's too small, divide it by 3
if candidate >= baseline_candidate {
candidate >>= 1;
factor2 -= 1;
} else {
candidate *= 3;
factor3 += 1;
}
}
bluesteins_candidates.sort();
// we now have a list of candidates to choosse from. some 2^n * 3^m FFTs are faster than others, so apply a filter, which will let us skip sizes that benchmarking has shown to be slow
let (chosen_size, _, _) =
bluesteins_candidates
.iter()
.find(filter_fn)
.unwrap_or_else(|| {
panic!(
"Failed to find a bluestein's candidate for len={}, candidates: {:?}",
len, bluesteins_candidates
)
});
*chosen_size
}
}
#[cfg(test)]
mod unit_tests {
use super::*;
// We don't need to actually compute anything for a FFT size of zero, but we do need to verify that it doesn't explode
#[test]
fn test_plan_zero_avx() {
let mut planner32 = FftPlannerAvx::<f32>::new().unwrap();
let fft_zero32 = planner32.plan_fft_forward(0);
fft_zero32.process(&mut []);
let mut planner64 = FftPlannerAvx::<f64>::new().unwrap();
let fft_zero64 = planner64.plan_fft_forward(0);
fft_zero64.process(&mut []);
}
}