rustfft/avx/
avx_bluesteins.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
use std::any::TypeId;
use std::sync::Arc;

use num_complex::Complex;
use num_integer::div_ceil;
use num_traits::Zero;

use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{array_utils, twiddles, FftDirection};
use crate::{Direction, Fft, FftNum, Length};

use super::CommonSimdData;
use super::{
    avx_vector::{AvxArray, AvxArrayMut, AvxVector, AvxVector128, AvxVector256},
    AvxNum,
};

/// Implementation of Bluestein's Algorithm
///
/// This algorithm computes an arbitrary-sized FFT in O(nlogn) time. It does this by converting this size n FFT into a
/// size M where M >= 2N - 1. The most obvious choice for M is a power of two, although that isn't a requirement.
///
/// It requires a large scratch space, so it's probably inconvenient to use as an inner FFT to other algorithms.
///
/// Bluestein's Algorithm is relatively expensive compared to other FFT algorithms. Benchmarking shows that it is up to
/// an order of magnitude slower than similar composite sizes.

pub struct BluesteinsAvx<A: AvxNum, T> {
    inner_fft_multiplier: Box<[A::VectorType]>,
    common_data: CommonSimdData<T, A::VectorType>,
    _phantom: std::marker::PhantomData<T>,
}
boilerplate_avx_fft_commondata!(BluesteinsAvx);

impl<A: AvxNum, T: FftNum> BluesteinsAvx<A, T> {
    /// Pairwise multiply the complex numbers in `left` with the complex numbers in `right`.
    /// This is exactly the same as `mul_complex` in `AvxVector`, but this implementation also conjugates the `left` input before multiplying
    #[inline(always)]
    unsafe fn mul_complex_conjugated<V: AvxVector>(left: V, right: V) -> V {
        // Extract the real and imaginary components from left into 2 separate registers
        let (left_real, left_imag) = V::duplicate_complex_components(left);

        // create a shuffled version of right where the imaginary values are swapped with the reals
        let right_shuffled = V::swap_complex_components(right);

        // multiply our duplicated imaginary left vector by our shuffled right vector. that will give us the right side of the traditional complex multiplication formula
        let output_right = V::mul(left_imag, right_shuffled);

        // use a FMA instruction to multiply together left side of the complex multiplication formula, then alternatingly add and subtract the left side from the right
        // By using subadd instead of addsub, we can conjugate the left side for free.
        V::fmsubadd(left_real, right, output_right)
    }

    /// Preallocates necessary arrays and precomputes necessary data to efficiently compute the FFT
    /// Returns Ok() if this machine has the required instruction sets, Err() if some instruction sets are missing
    #[inline]
    pub fn new(len: usize, inner_fft: Arc<dyn Fft<T>>) -> Result<Self, ()> {
        // Internal sanity check: Make sure that A == T.
        // This struct has two generic parameters A and T, but they must always be the same, and are only kept separate to help work around the lack of specialization.
        // It would be cool if we could do this as a static_assert instead
        let id_a = TypeId::of::<A>();
        let id_t = TypeId::of::<T>();
        assert_eq!(id_a, id_t);

        let has_avx = is_x86_feature_detected!("avx");
        let has_fma = is_x86_feature_detected!("fma");
        if has_avx && has_fma {
            // Safety: new_with_avx requires the "avx" feature set. Since we know it's present, we're safe
            Ok(unsafe { Self::new_with_avx(len, inner_fft) })
        } else {
            Err(())
        }
    }

    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(len: usize, inner_fft: Arc<dyn Fft<T>>) -> Self {
        let inner_fft_len = inner_fft.len();
        assert!(len * 2 - 1 <= inner_fft_len, "Bluestein's algorithm requires inner_fft.len() >= self.len() * 2 - 1. Expected >= {}, got {}", len * 2 - 1, inner_fft_len);
        assert_eq!(inner_fft_len % A::VectorType::COMPLEX_PER_VECTOR, 0, "BluesteinsAvx requires its inner_fft.len() to be a multiple of {} (IE the number of complex numbers in a single vector) inner_fft.len() = {}", A::VectorType::COMPLEX_PER_VECTOR, inner_fft_len);

        // when computing FFTs, we're going to run our inner multiply pairwise by some precomputed data, then run an inverse inner FFT. We need to precompute that inner data here
        let inner_fft_scale = A::one() / A::from_usize(inner_fft_len).unwrap();
        let direction = inner_fft.fft_direction();

        // Compute twiddle factors that we'll run our inner FFT on
        let mut inner_fft_input = vec![Complex::zero(); inner_fft_len];
        twiddles::fill_bluesteins_twiddles(
            &mut inner_fft_input[..len],
            direction.opposite_direction(),
        );

        // Scale the computed twiddles and copy them to the end of the array
        inner_fft_input[0] = inner_fft_input[0] * inner_fft_scale;
        for i in 1..len {
            let twiddle = inner_fft_input[i] * inner_fft_scale;
            inner_fft_input[i] = twiddle;
            inner_fft_input[inner_fft_len - i] = twiddle;
        }

        //Compute the inner fft
        let mut inner_fft_scratch = vec![Complex::zero(); inner_fft.get_inplace_scratch_len()];

        {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_input: &mut [Complex<T>] =
                array_utils::workaround_transmute_mut(&mut inner_fft_input);

            inner_fft.process_with_scratch(transmuted_input, &mut inner_fft_scratch);
        }

        // When computing the FFT, we'll want this array to be pre-conjugated, so conjugate it now
        let conjugation_mask =
            AvxVector256::broadcast_complex_elements(Complex::new(A::zero(), -A::zero()));
        let inner_fft_multiplier = inner_fft_input
            .chunks_exact(A::VectorType::COMPLEX_PER_VECTOR)
            .map(|chunk| {
                let chunk_vector = chunk.load_complex(0);
                AvxVector::xor(chunk_vector, conjugation_mask) // compute our conjugation by xoring our data with a precomputed mask
            })
            .collect::<Vec<_>>()
            .into_boxed_slice();

        // also compute some more mundane twiddle factors to start and end with.
        let chunk_count = div_ceil(len, A::VectorType::COMPLEX_PER_VECTOR);
        let twiddle_count = chunk_count * A::VectorType::COMPLEX_PER_VECTOR;
        let mut twiddles_scalar: Vec<Complex<A>> = vec![Complex::zero(); twiddle_count];
        twiddles::fill_bluesteins_twiddles(&mut twiddles_scalar[..len], direction);

        // We have the twiddles in scalar format, last step is to copy them over to AVX vectors
        let twiddles: Vec<_> = twiddles_scalar
            .chunks_exact(A::VectorType::COMPLEX_PER_VECTOR)
            .map(|chunk| chunk.load_complex(0))
            .collect();

        let required_scratch = inner_fft_input.len() + inner_fft_scratch.len();

        Self {
            inner_fft_multiplier,
            common_data: CommonSimdData {
                inner_fft,
                twiddles: twiddles.into_boxed_slice(),

                len,

                inplace_scratch_len: required_scratch,
                outofplace_scratch_len: required_scratch,

                direction,
            },
            _phantom: std::marker::PhantomData,
        }
    }

    // Do the necessary setup for bluestein's algorithm: copy the data to the inner buffers, apply some twiddle factors, zero out the rest of the inner buffer
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn prepare_bluesteins(
        &self,
        input: &[Complex<A>],
        mut inner_fft_buffer: &mut [Complex<A>],
    ) {
        let chunk_count = self.common_data.twiddles.len() - 1;
        let remainder = self.len() - chunk_count * A::VectorType::COMPLEX_PER_VECTOR;

        // Copy the buffer into our inner FFT input, applying twiddle factors as we go. the buffer will only fill part of the FFT input, so zero fill the rest
        for (i, twiddle) in self.common_data.twiddles[..chunk_count].iter().enumerate() {
            let index = i * A::VectorType::COMPLEX_PER_VECTOR;
            let input_vector = input.load_complex(index);
            let product_vector = AvxVector::mul_complex(input_vector, *twiddle);
            inner_fft_buffer.store_complex(product_vector, index);
        }

        // the buffer will almost certainly have a remainder. it's so likely, in fact, that we're just going to apply a remainder unconditionally
        // it uses a couple more instructions in the rare case when our FFT size is a multiple of 4, but saves instructions when it's not
        {
            let remainder_twiddle = self.common_data.twiddles[chunk_count];

            let remainder_index = chunk_count * A::VectorType::COMPLEX_PER_VECTOR;
            let remainder_data = match remainder {
                1 => input.load_partial1_complex(remainder_index).zero_extend(),
                2 => {
                    if A::VectorType::COMPLEX_PER_VECTOR == 2 {
                        input.load_complex(remainder_index)
                    } else {
                        input.load_partial2_complex(remainder_index).zero_extend()
                    }
                }
                3 => input.load_partial3_complex(remainder_index),
                4 => input.load_complex(remainder_index),
                _ => unreachable!(),
            };

            let twiddled_remainder = AvxVector::mul_complex(remainder_twiddle, remainder_data);
            inner_fft_buffer.store_complex(twiddled_remainder, remainder_index);
        }

        // zero fill the rest of the `inner` array
        let zerofill_start = chunk_count + 1;
        for i in zerofill_start..(inner_fft_buffer.len() / A::VectorType::COMPLEX_PER_VECTOR) {
            let index = i * A::VectorType::COMPLEX_PER_VECTOR;
            inner_fft_buffer.store_complex(AvxVector::zero(), index);
        }
    }

    // Do the necessary finalization for bluestein's algorithm: Conjugate the inner FFT buffer, apply some twiddle factors, zero out the rest of the inner buffer
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn finalize_bluesteins(
        &self,
        inner_fft_buffer: &[Complex<A>],
        mut output: &mut [Complex<A>],
    ) {
        let chunk_count = self.common_data.twiddles.len() - 1;
        let remainder = self.len() - chunk_count * A::VectorType::COMPLEX_PER_VECTOR;

        // copy our data to the output, applying twiddle factors again as we go. Also conjugate inner_fft_buffer to complete the inverse FFT
        for (i, twiddle) in self.common_data.twiddles[..chunk_count].iter().enumerate() {
            let index = i * A::VectorType::COMPLEX_PER_VECTOR;
            let inner_vector = inner_fft_buffer.load_complex(index);
            let product_vector = Self::mul_complex_conjugated(inner_vector, *twiddle);
            output.store_complex(product_vector, index);
        }

        // again, unconditionally apply a remainder
        {
            let remainder_twiddle = self.common_data.twiddles[chunk_count];

            let remainder_index = chunk_count * A::VectorType::COMPLEX_PER_VECTOR;
            let inner_vector = inner_fft_buffer.load_complex(remainder_index);
            let product_vector = Self::mul_complex_conjugated(inner_vector, remainder_twiddle);

            match remainder {
                1 => output.store_partial1_complex(product_vector.lo(), remainder_index),
                2 => {
                    if A::VectorType::COMPLEX_PER_VECTOR == 2 {
                        output.store_complex(product_vector, remainder_index)
                    } else {
                        output.store_partial2_complex(product_vector.lo(), remainder_index)
                    }
                }
                3 => output.store_partial3_complex(product_vector, remainder_index),
                4 => output.store_complex(product_vector, remainder_index),
                _ => unreachable!(),
            };
        }
    }

    // compute buffer[i] = buffer[i].conj() * multiplier[i] pairwise complex multiplication for each element.
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn pairwise_complex_multiply_conjugated(
        mut buffer: impl AvxArrayMut<A>,
        multiplier: &[A::VectorType],
    ) {
        for (i, right) in multiplier.iter().enumerate() {
            let left = buffer.load_complex(i * A::VectorType::COMPLEX_PER_VECTOR);

            // Do a complex multiplication between `left` and `right`
            let product = Self::mul_complex_conjugated(left, *right);

            // Store the result
            buffer.store_complex(product, i * A::VectorType::COMPLEX_PER_VECTOR);
        }
    }

    fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
        let (inner_input, inner_scratch) = scratch
            .split_at_mut(self.inner_fft_multiplier.len() * A::VectorType::COMPLEX_PER_VECTOR);

        // do the necessary setup for bluestein's algorithm: copy the data to the inner buffers, apply some twiddle factors, zero out the rest of the inner buffer
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_buffer: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(buffer);
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);

            self.prepare_bluesteins(transmuted_buffer, transmuted_inner_input);
        }

        // run our inner forward FFT
        self.common_data
            .inner_fft
            .process_with_scratch(inner_input, inner_scratch);

        // Multiply our inner FFT output by our precomputed data. Then, conjugate the result to set up for an inverse FFT.
        // We can conjugate the result of multiplication by conjugating both inputs. We pre-conjugated the multiplier array,
        // so we just need to conjugate inner_input, which the pairwise_complex_multiply_conjugated function will handle
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);

            Self::pairwise_complex_multiply_conjugated(
                transmuted_inner_input,
                &self.inner_fft_multiplier,
            )
        };

        // inverse FFT. we're computing a forward but we're massaging it into an inverse by conjugating the inputs and outputs
        self.common_data
            .inner_fft
            .process_with_scratch(inner_input, inner_scratch);

        // finalize the result
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_buffer: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(buffer);
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);

            self.finalize_bluesteins(transmuted_inner_input, transmuted_buffer);
        }
    }

    fn perform_fft_out_of_place(
        &self,
        input: &[Complex<T>],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) {
        let (inner_input, inner_scratch) = scratch
            .split_at_mut(self.inner_fft_multiplier.len() * A::VectorType::COMPLEX_PER_VECTOR);

        // do the necessary setup for bluestein's algorithm: copy the data to the inner buffers, apply some twiddle factors, zero out the rest of the inner buffer
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_input: &[Complex<A>] = array_utils::workaround_transmute(input);
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);

            self.prepare_bluesteins(transmuted_input, transmuted_inner_input)
        }

        // run our inner forward FFT
        self.common_data
            .inner_fft
            .process_with_scratch(inner_input, inner_scratch);

        // Multiply our inner FFT output by our precomputed data. Then, conjugate the result to set up for an inverse FFT.
        // We can conjugate the result of multiplication by conjugating both inputs. We pre-conjugated the multiplier array,
        // so we just need to conjugate inner_input, which the pairwise_complex_multiply_conjugated function will handle
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);

            Self::pairwise_complex_multiply_conjugated(
                transmuted_inner_input,
                &self.inner_fft_multiplier,
            )
        };

        // inverse FFT. we're computing a forward but we're massaging it into an inverse by conjugating the inputs and outputs
        self.common_data
            .inner_fft
            .process_with_scratch(inner_input, inner_scratch);

        // finalize the result
        unsafe {
            // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
            let transmuted_output: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(output);
            let transmuted_inner_input: &mut [Complex<A>] =
                array_utils::workaround_transmute_mut(inner_input);

            self.finalize_bluesteins(transmuted_inner_input, transmuted_output)
        }
    }
}

#[cfg(test)]
mod unit_tests {
    use num_traits::Float;
    use rand::distributions::uniform::SampleUniform;

    use super::*;
    use crate::algorithm::Dft;
    use crate::test_utils::check_fft_algorithm;
    use std::sync::Arc;

    #[test]
    fn test_bluesteins_avx_f32() {
        for len in 2..16 {
            // for this len, compute the range of inner FFT lengths we'll use.
            // Bluesteins AVX f32 requires a multiple of 4 for the inner FFT, so we need to go up to the next multiple of 4 from the minimum
            let minimum_inner: usize = len * 2 - 1;
            let remainder = minimum_inner % 4;

            // remainder will never be 0, because "n * 2 - 1" is guaranteed to be odd. so we can just subtract the remainder and add 4.
            let next_multiple_of_4 = minimum_inner - remainder + 4;
            let maximum_inner = minimum_inner.checked_next_power_of_two().unwrap() + 1;

            // start at the next multiple of 4, and increment by 4 unti lwe get to the next power of 2.
            for inner_len in (next_multiple_of_4..maximum_inner).step_by(4) {
                test_bluesteins_avx_with_length::<f32>(len, inner_len, FftDirection::Forward);
                test_bluesteins_avx_with_length::<f32>(len, inner_len, FftDirection::Inverse);
            }
        }
    }

    #[test]
    fn test_bluesteins_avx_f64() {
        for len in 2..16 {
            // for this len, compute the range of inner FFT lengths we'll use.
            // Bluesteins AVX f64 requires a multiple of 2 for the inner FFT, so we need to go up to the next multiple of 2 from the minimum
            let minimum_inner: usize = len * 2 - 1;
            let remainder = minimum_inner % 2;

            let next_multiple_of_2 = minimum_inner + remainder;
            let maximum_inner = minimum_inner.checked_next_power_of_two().unwrap() + 1;

            // start at the next multiple of 2, and increment by 2 unti lwe get to the next power of 2.
            for inner_len in (next_multiple_of_2..maximum_inner).step_by(2) {
                test_bluesteins_avx_with_length::<f64>(len, inner_len, FftDirection::Forward);
                test_bluesteins_avx_with_length::<f64>(len, inner_len, FftDirection::Inverse);
            }
        }
    }

    fn test_bluesteins_avx_with_length<T: AvxNum + Float + SampleUniform>(
        len: usize,
        inner_len: usize,
        direction: FftDirection,
    ) {
        let inner_fft = Arc::new(Dft::new(inner_len, direction));
        let fft: BluesteinsAvx<T, T> = BluesteinsAvx::new(len, inner_fft).expect(
            "Can't run test because this machine doesn't have the required instruction sets",
        );

        check_fft_algorithm::<T>(&fft, len, direction);
    }
}