rustfft/avx/
avx64_butterflies.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
use std::arch::x86_64::*;
use std::marker::PhantomData;
use std::mem::MaybeUninit;

use num_complex::Complex;

use crate::array_utils;
use crate::array_utils::workaround_transmute_mut;
use crate::array_utils::DoubleBuf;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{common::FftNum, twiddles};
use crate::{Direction, Fft, FftDirection, Length};

use super::avx64_utils;
use super::avx_vector;
use super::avx_vector::{AvxArray, AvxArrayMut, AvxVector, AvxVector128, AvxVector256, Rotation90};

// Safety: This macro will call `self::perform_fft_f32()` which probably has a #[target_feature(enable = "...")] annotation on it.
// Calling functions with that annotation is unsafe, because it doesn't actually check if the CPU has the required features.
// Callers of this macro must guarantee that users can't even obtain an instance of $struct_name if their CPU doesn't have the required CPU features.
#[allow(unused)]
macro_rules! boilerplate_fft_simd_butterfly {
    ($struct_name:ident, $len:expr) => {
        impl $struct_name<f64> {
            #[inline]
            pub fn new(direction: FftDirection) -> Result<Self, ()> {
                let has_avx = is_x86_feature_detected!("avx");
                let has_fma = is_x86_feature_detected!("fma");
                if has_avx && has_fma {
                    // Safety: new_internal requires the "avx" feature set. Since we know it's present, we're safe
                    Ok(unsafe { Self::new_with_avx(direction) })
                } else {
                    Err(())
                }
            }
        }
        impl<T: FftNum> Fft<T> for $struct_name<f64> {
            fn process_outofplace_with_scratch(
                &self,
                input: &mut [Complex<T>],
                output: &mut [Complex<T>],
                _scratch: &mut [Complex<T>],
            ) {
                if input.len() < self.len() || output.len() != input.len() {
                    // We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_outofplace(self.len(), input.len(), output.len(), 0, 0);
                    return; // Unreachable, because fft_error_outofplace asserts, but it helps codegen to put it here
                }

                let result = array_utils::iter_chunks_zipped(
                    input,
                    output,
                    self.len(),
                    |in_chunk, out_chunk| {
                        unsafe {
                            // Specialization workaround: See the comments in FftPlannerAvx::new() for why we have to transmute these slices
                            let input_slice = workaround_transmute_mut(in_chunk);
                            let output_slice = workaround_transmute_mut(out_chunk);
                            self.perform_fft_f64(DoubleBuf {
                                input: input_slice,
                                output: output_slice,
                            });
                        }
                    },
                );

                if result.is_err() {
                    // We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
                    // but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_outofplace(self.len(), input.len(), output.len(), 0, 0);
                }
            }
            fn process_with_scratch(&self, buffer: &mut [Complex<T>], _scratch: &mut [Complex<T>]) {
                if buffer.len() < self.len() {
                    // We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_inplace(self.len(), buffer.len(), 0, 0);
                    return; // Unreachable, because fft_error_inplace asserts, but it helps codegen to put it here
                }

                let result = array_utils::iter_chunks(buffer, self.len(), |chunk| {
                    unsafe {
                        // Specialization workaround: See the comments in FftPlannerAvx::new() for why we have to transmute these slices
                        self.perform_fft_f64(workaround_transmute_mut::<_, Complex<f64>>(chunk));
                    }
                });

                if result.is_err() {
                    // We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
                    // but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_inplace(self.len(), buffer.len(), 0, 0);
                }
            }
            #[inline(always)]
            fn get_inplace_scratch_len(&self) -> usize {
                0
            }
            #[inline(always)]
            fn get_outofplace_scratch_len(&self) -> usize {
                0
            }
        }
        impl<T> Length for $struct_name<T> {
            #[inline(always)]
            fn len(&self) -> usize {
                $len
            }
        }
        impl<T> Direction for $struct_name<T> {
            #[inline(always)]
            fn fft_direction(&self) -> FftDirection {
                self.direction
            }
        }
    };
}

// Safety: This macro will call `self::column_butterflies_and_transpose()` and `self::row_butterflies()` which probably has a #[target_feature(enable = "...")] annotation on it.
// Calling functions with that annotation is unsafe, because it doesn't actually check if the CPU has the required features.
// Callers of this macro must guarantee that users can't even obtain an instance of $struct_name if their CPU doesn't have the required CPU features.
macro_rules! boilerplate_fft_simd_butterfly_with_scratch {
    ($struct_name:ident, $len:expr) => {
        impl $struct_name<f64> {
            #[inline]
            pub fn is_supported_by_cpu() -> bool {
                is_x86_feature_detected!("avx") && is_x86_feature_detected!("fma")
            }
            #[inline]
            pub fn new(direction: FftDirection) -> Result<Self, ()> {
                if Self::is_supported_by_cpu() {
                    // Safety: new_internal requires the "avx" feature set. Since we know it's present, we're safe
                    Ok(unsafe { Self::new_with_avx(direction) })
                } else {
                    Err(())
                }
            }
        }
        impl<T> $struct_name<T> {
            #[inline]
            fn perform_fft_inplace(
                &self,
                buffer: &mut [Complex<f64>],
                scratch: &mut [Complex<f64>],
            ) {
                // Perform the column FFTs
                // Safety: self.perform_column_butterflies() requres the "avx" and "fma" instruction sets, and we return Err() in our constructor if the instructions aren't available
                unsafe { self.column_butterflies_and_transpose(buffer, scratch) };

                // process the row FFTs, and copy from the scratch back to the buffer as we go
                // Safety: self.transpose() requres the "avx" instruction set, and we return Err() in our constructor if the instructions aren't available
                unsafe {
                    self.row_butterflies(DoubleBuf {
                        input: scratch,
                        output: buffer,
                    })
                };
            }

            #[inline]
            fn perform_fft_out_of_place(
                &self,
                input: &mut [Complex<f64>],
                output: &mut [Complex<f64>],
            ) {
                // Perform the column FFTs
                // Safety: self.perform_column_butterflies() requres the "avx" and "fma" instruction sets, and we return Err() in our constructor if the instructions aren't available
                unsafe { self.column_butterflies_and_transpose(input, output) };

                // process the row FFTs in-place in the output buffer
                // Safety: self.transpose() requres the "avx" instruction set, and we return Err() in our constructor if the instructions aren't available
                unsafe { self.row_butterflies(output) };
            }
        }
        impl<T: FftNum> Fft<T> for $struct_name<f64> {
            fn process_outofplace_with_scratch(
                &self,
                input: &mut [Complex<T>],
                output: &mut [Complex<T>],
                _scratch: &mut [Complex<T>],
            ) {
                if input.len() < self.len() || output.len() != input.len() {
                    // We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_outofplace(self.len(), input.len(), output.len(), 0, 0);
                    return; // Unreachable, because fft_error_outofplace asserts, but it helps codegen to put it here
                }

                // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
                let transmuted_input: &mut [Complex<f64>] =
                    unsafe { array_utils::workaround_transmute_mut(input) };
                let transmuted_output: &mut [Complex<f64>] =
                    unsafe { array_utils::workaround_transmute_mut(output) };
                let result = array_utils::iter_chunks_zipped(
                    transmuted_input,
                    transmuted_output,
                    self.len(),
                    |in_chunk, out_chunk| self.perform_fft_out_of_place(in_chunk, out_chunk),
                );

                if result.is_err() {
                    // We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
                    // but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_outofplace(self.len(), input.len(), output.len(), 0, 0);
                }
            }
            fn process_with_scratch(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
                let required_scratch = self.len();
                if scratch.len() < required_scratch || buffer.len() < self.len() {
                    // We want to trigger a panic, but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_inplace(self.len(), buffer.len(), self.len(), scratch.len());
                    return; // Unreachable, because fft_error_inplace asserts, but it helps codegen to put it here
                }

                let scratch = &mut scratch[..required_scratch];

                // Specialization workaround: See the comments in FftPlannerAvx::new() for why these calls to array_utils::workaround_transmute are necessary
                let transmuted_buffer: &mut [Complex<f64>] =
                    unsafe { array_utils::workaround_transmute_mut(buffer) };
                let transmuted_scratch: &mut [Complex<f64>] =
                    unsafe { array_utils::workaround_transmute_mut(scratch) };
                let result = array_utils::iter_chunks(transmuted_buffer, self.len(), |chunk| {
                    self.perform_fft_inplace(chunk, transmuted_scratch)
                });

                if result.is_err() {
                    // We want to trigger a panic, because the buffer sizes weren't cleanly divisible by the FFT size,
                    // but we want to avoid doing it in this function to reduce code size, so call a function marked cold and inline(never) that will do it for us
                    fft_error_inplace(self.len(), buffer.len(), self.len(), scratch.len());
                }
            }
            #[inline(always)]
            fn get_inplace_scratch_len(&self) -> usize {
                $len
            }
            #[inline(always)]
            fn get_outofplace_scratch_len(&self) -> usize {
                0
            }
        }
        impl<T> Length for $struct_name<T> {
            #[inline(always)]
            fn len(&self) -> usize {
                $len
            }
        }
        impl<T> Direction for $struct_name<T> {
            #[inline(always)]
            fn fft_direction(&self) -> FftDirection {
                self.direction
            }
        }
    };
}

macro_rules! gen_butterfly_twiddles_interleaved_columns {
    ($num_rows:expr, $num_cols:expr, $skip_cols:expr, $direction: expr) => {{
        const FFT_LEN: usize = $num_rows * $num_cols;
        const TWIDDLE_ROWS: usize = $num_rows - 1;
        const TWIDDLE_COLS: usize = $num_cols - $skip_cols;
        const TWIDDLE_VECTOR_COLS: usize = TWIDDLE_COLS / 2;
        const TWIDDLE_VECTOR_COUNT: usize = TWIDDLE_VECTOR_COLS * TWIDDLE_ROWS;
        let mut twiddles = [AvxVector::zero(); TWIDDLE_VECTOR_COUNT];
        for index in 0..TWIDDLE_VECTOR_COUNT {
            let y = (index / TWIDDLE_VECTOR_COLS) + 1;
            let x = (index % TWIDDLE_VECTOR_COLS) * 2 + $skip_cols;

            twiddles[index] = AvxVector::make_mixedradix_twiddle_chunk(x, y, FFT_LEN, $direction);
        }
        twiddles
    }};
}

macro_rules! gen_butterfly_twiddles_separated_columns {
    ($num_rows:expr, $num_cols:expr, $skip_cols:expr, $direction: expr) => {{
        const FFT_LEN: usize = $num_rows * $num_cols;
        const TWIDDLE_ROWS: usize = $num_rows - 1;
        const TWIDDLE_COLS: usize = $num_cols - $skip_cols;
        const TWIDDLE_VECTOR_COLS: usize = TWIDDLE_COLS / 2;
        const TWIDDLE_VECTOR_COUNT: usize = TWIDDLE_VECTOR_COLS * TWIDDLE_ROWS;
        let mut twiddles = [AvxVector::zero(); TWIDDLE_VECTOR_COUNT];
        for index in 0..TWIDDLE_VECTOR_COUNT {
            let y = (index % TWIDDLE_ROWS) + 1;
            let x = (index / TWIDDLE_ROWS) * 2 + $skip_cols;

            twiddles[index] = AvxVector::make_mixedradix_twiddle_chunk(x, y, FFT_LEN, $direction);
        }
        twiddles
    }};
}

pub struct Butterfly5Avx64<T> {
    twiddles: [__m256d; 3],
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly5Avx64, 5);
impl Butterfly5Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        let twiddle1 = twiddles::compute_twiddle(1, 5, direction);
        let twiddle2 = twiddles::compute_twiddle(2, 5, direction);
        Self {
            twiddles: [
                _mm256_set_pd(twiddle1.im, twiddle1.im, twiddle1.re, twiddle1.re),
                _mm256_set_pd(twiddle2.im, twiddle2.im, twiddle2.re, twiddle2.re),
                _mm256_set_pd(-twiddle1.im, -twiddle1.im, twiddle1.re, twiddle1.re),
            ],
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly5Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        let input0 = _mm256_loadu2_m128d(
            buffer.input_ptr() as *const f64,
            buffer.input_ptr() as *const f64,
        );
        let input12 = buffer.load_complex(1);
        let input34 = buffer.load_complex(3);

        // swap elements for inputs 3 and 4
        let input43 = AvxVector::reverse_complex_elements(input34);

        // do some prep work before we can start applying twiddle factors
        let [sum12, diff43] = AvxVector::column_butterfly2([input12, input43]);

        let rotation = AvxVector::make_rotation90(FftDirection::Inverse);
        let rotated43 = AvxVector::rotate90(diff43, rotation);

        let [mid14, mid23] = avx64_utils::transpose_2x2_f64([sum12, rotated43]);

        // to compute the first output, compute the sum of all elements. mid14[0] and mid23[0] already have the sum of 1+4 and 2+3 respectively, so if we add them, we'll get the sum of all 4
        let sum1234 = AvxVector::add(mid14.lo(), mid23.lo());
        let output0 = AvxVector::add(input0.lo(), sum1234);

        // apply twiddle factors
        let twiddled_outer14 = AvxVector::mul(mid14, self.twiddles[0]);
        let twiddled_inner14 = AvxVector::mul(mid14, self.twiddles[1]);
        let twiddled14 = AvxVector::fmadd(mid23, self.twiddles[1], twiddled_outer14);
        let twiddled23 = AvxVector::fmadd(mid23, self.twiddles[2], twiddled_inner14);

        // unpack the data for the last butterfly 2
        let [twiddled12, twiddled43] = avx64_utils::transpose_2x2_f64([twiddled14, twiddled23]);
        let [output12, output43] = AvxVector::column_butterfly2([twiddled12, twiddled43]);

        // swap the elements in output43 before writing them out, and add the first input to everything
        let final12 = AvxVector::add(input0, output12);
        let output34 = AvxVector::reverse_complex_elements(output43);
        let final34 = AvxVector::add(input0, output34);

        buffer.store_partial1_complex(output0, 0);
        buffer.store_complex(final12, 1);
        buffer.store_complex(final34, 3);
    }
}

pub struct Butterfly7Avx64<T> {
    twiddles: [__m256d; 5],
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly7Avx64, 7);
impl Butterfly7Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        let twiddle1 = twiddles::compute_twiddle(1, 7, direction);
        let twiddle2 = twiddles::compute_twiddle(2, 7, direction);
        let twiddle3 = twiddles::compute_twiddle(3, 7, direction);
        Self {
            twiddles: [
                _mm256_set_pd(twiddle1.im, twiddle1.im, twiddle1.re, twiddle1.re),
                _mm256_set_pd(twiddle2.im, twiddle2.im, twiddle2.re, twiddle2.re),
                _mm256_set_pd(twiddle3.im, twiddle3.im, twiddle3.re, twiddle3.re),
                _mm256_set_pd(-twiddle3.im, -twiddle3.im, twiddle3.re, twiddle3.re),
                _mm256_set_pd(-twiddle1.im, -twiddle1.im, twiddle1.re, twiddle1.re),
            ],
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly7Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        let input0 = _mm256_loadu2_m128d(
            buffer.input_ptr() as *const f64,
            buffer.input_ptr() as *const f64,
        );
        let input12 = buffer.load_complex(1);
        let input3 = buffer.load_partial1_complex(3);
        let input4 = buffer.load_partial1_complex(4);
        let input56 = buffer.load_complex(5);

        // reverse the order of input56
        let input65 = AvxVector::reverse_complex_elements(input56);

        // do some prep work before we can start applying twiddle factors
        let [sum12, diff65] = AvxVector::column_butterfly2([input12, input65]);
        let [sum3, diff4] = AvxVector::column_butterfly2([input3, input4]);

        let rotation = AvxVector::make_rotation90(FftDirection::Inverse);
        let rotated65 = AvxVector::rotate90(diff65, rotation);
        let rotated4 = AvxVector::rotate90(diff4, rotation.lo());

        let [mid16, mid25] = avx64_utils::transpose_2x2_f64([sum12, rotated65]);
        let mid34 = AvxVector128::merge(sum3, rotated4);

        // to compute the first output, compute the sum of all elements. mid16[0], mid25[0], and mid34[0] already have the sum of 1+6, 2+5 and 3+4 respectively, so if we add them, we'll get 1+2+3+4+5+6
        let output0_left = AvxVector::add(mid16.lo(), mid25.lo());
        let output0_right = AvxVector::add(input0.lo(), mid34.lo());
        let output0 = AvxVector::add(output0_left, output0_right);
        buffer.store_partial1_complex(output0, 0);

        // apply twiddle factors
        let twiddled16_intermediate1 = AvxVector::mul(mid16, self.twiddles[0]);
        let twiddled25_intermediate1 = AvxVector::mul(mid16, self.twiddles[1]);
        let twiddled34_intermediate1 = AvxVector::mul(mid16, self.twiddles[2]);

        let twiddled16_intermediate2 =
            AvxVector::fmadd(mid25, self.twiddles[1], twiddled16_intermediate1);
        let twiddled25_intermediate2 =
            AvxVector::fmadd(mid25, self.twiddles[3], twiddled25_intermediate1);
        let twiddled34_intermediate2 =
            AvxVector::fmadd(mid25, self.twiddles[4], twiddled34_intermediate1);

        let twiddled16 = AvxVector::fmadd(mid34, self.twiddles[2], twiddled16_intermediate2);
        let twiddled25 = AvxVector::fmadd(mid34, self.twiddles[4], twiddled25_intermediate2);
        let twiddled34 = AvxVector::fmadd(mid34, self.twiddles[1], twiddled34_intermediate2);

        // unpack the data for the last butterfly 2
        let [twiddled12, twiddled65] = avx64_utils::transpose_2x2_f64([twiddled16, twiddled25]);

        // we can save one add if we add input0 to twiddled3 now. normally we'd add input0 to the final output, but the arrangement of data makes that a little awkward
        let twiddled03 = AvxVector::add(twiddled34.lo(), input0.lo());

        let [output12, output65] = AvxVector::column_butterfly2([twiddled12, twiddled65]);
        let final12 = AvxVector::add(output12, input0);
        let output56 = AvxVector::reverse_complex_elements(output65);
        let final56 = AvxVector::add(output56, input0);

        let [final3, final4] = AvxVector::column_butterfly2([twiddled03, twiddled34.hi()]);

        buffer.store_complex(final12, 1);
        buffer.store_partial1_complex(final3, 3);
        buffer.store_partial1_complex(final4, 4);
        buffer.store_complex(final56, 5);
    }
}

pub struct Butterfly11Avx64<T> {
    twiddles: [__m256d; 10],
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly11Avx64, 11);
impl Butterfly11Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        let twiddle1 = twiddles::compute_twiddle(1, 11, direction);
        let twiddle2 = twiddles::compute_twiddle(2, 11, direction);
        let twiddle3 = twiddles::compute_twiddle(3, 11, direction);
        let twiddle4 = twiddles::compute_twiddle(4, 11, direction);
        let twiddle5 = twiddles::compute_twiddle(5, 11, direction);

        let twiddles = [
            _mm256_set_pd(twiddle1.im, twiddle1.im, twiddle1.re, twiddle1.re),
            _mm256_set_pd(twiddle2.im, twiddle2.im, twiddle2.re, twiddle2.re),
            _mm256_set_pd(twiddle3.im, twiddle3.im, twiddle3.re, twiddle3.re),
            _mm256_set_pd(twiddle4.im, twiddle4.im, twiddle4.re, twiddle4.re),
            _mm256_set_pd(twiddle5.im, twiddle5.im, twiddle5.re, twiddle5.re),
            _mm256_set_pd(-twiddle5.im, -twiddle5.im, twiddle5.re, twiddle5.re),
            _mm256_set_pd(-twiddle4.im, -twiddle4.im, twiddle4.re, twiddle4.re),
            _mm256_set_pd(-twiddle3.im, -twiddle3.im, twiddle3.re, twiddle3.re),
            _mm256_set_pd(-twiddle2.im, -twiddle2.im, twiddle2.re, twiddle2.re),
            _mm256_set_pd(-twiddle1.im, -twiddle1.im, twiddle1.re, twiddle1.re),
        ];

        Self {
            twiddles,
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly11Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        let input0 = buffer.load_partial1_complex(0);
        let input12 = buffer.load_complex(1);
        let input34 = buffer.load_complex(3);
        let input56 = buffer.load_complex(5);
        let input78 = buffer.load_complex(7);
        let input910 = buffer.load_complex(9);

        // reverse the order of input78910, and separate
        let [input55, input66] = AvxVector::unpack_complex([input56, input56]);
        let input87 = AvxVector::reverse_complex_elements(input78);
        let input109 = AvxVector::reverse_complex_elements(input910);

        // do some initial butterflies and rotations
        let [sum12, diff109] = AvxVector::column_butterfly2([input12, input109]);
        let [sum34, diff87] = AvxVector::column_butterfly2([input34, input87]);
        let [sum55, diff66] = AvxVector::column_butterfly2([input55, input66]);

        let rotation = AvxVector::make_rotation90(FftDirection::Inverse);
        let rotated109 = AvxVector::rotate90(diff109, rotation);
        let rotated87 = AvxVector::rotate90(diff87, rotation);
        let rotated66 = AvxVector::rotate90(diff66, rotation);

        // arrange the data into the format to apply twiddles
        let [mid110, mid29] = AvxVector::unpack_complex([sum12, rotated109]);
        let [mid38, mid47] = AvxVector::unpack_complex([sum34, rotated87]);
        let mid56 = AvxVector::unpacklo_complex([sum55, rotated66]);

        // to compute the first output, compute the sum of all elements. mid110[0], mid29[0], mid38[0], mid47 already have the sum of 1+10, 2+9 and so on, so if we add them, we'll get the sum of everything
        let mid12910 = AvxVector::add(mid110.lo(), mid29.lo());
        let mid3478 = AvxVector::add(mid38.lo(), mid47.lo());
        let output0_left = AvxVector::add(input0, mid56.lo());
        let output0_right = AvxVector::add(mid12910, mid3478);
        let output0 = AvxVector::add(output0_left, output0_right);
        buffer.store_partial1_complex(output0, 0);

        // we need to add the first input to each of our 5 twiddles values -- but only the first complex element of each vector. so just use zero for the other element
        let zero = _mm_setzero_pd();
        let input0 = AvxVector256::merge(input0, zero);

        // apply twiddle factors
        let twiddled110 = AvxVector::fmadd(mid110, self.twiddles[0], input0);
        let twiddled38 = AvxVector::fmadd(mid110, self.twiddles[2], input0);
        let twiddled29 = AvxVector::fmadd(mid110, self.twiddles[1], input0);
        let twiddled47 = AvxVector::fmadd(mid110, self.twiddles[3], input0);
        let twiddled56 = AvxVector::fmadd(mid110, self.twiddles[4], input0);

        let twiddled110 = AvxVector::fmadd(mid29, self.twiddles[1], twiddled110);
        let twiddled38 = AvxVector::fmadd(mid29, self.twiddles[5], twiddled38);
        let twiddled29 = AvxVector::fmadd(mid29, self.twiddles[3], twiddled29);
        let twiddled47 = AvxVector::fmadd(mid29, self.twiddles[7], twiddled47);
        let twiddled56 = AvxVector::fmadd(mid29, self.twiddles[9], twiddled56);

        let twiddled110 = AvxVector::fmadd(mid38, self.twiddles[2], twiddled110);
        let twiddled38 = AvxVector::fmadd(mid38, self.twiddles[8], twiddled38);
        let twiddled29 = AvxVector::fmadd(mid38, self.twiddles[5], twiddled29);
        let twiddled47 = AvxVector::fmadd(mid38, self.twiddles[0], twiddled47);
        let twiddled56 = AvxVector::fmadd(mid38, self.twiddles[3], twiddled56);

        let twiddled110 = AvxVector::fmadd(mid47, self.twiddles[3], twiddled110);
        let twiddled38 = AvxVector::fmadd(mid47, self.twiddles[0], twiddled38);
        let twiddled29 = AvxVector::fmadd(mid47, self.twiddles[7], twiddled29);
        let twiddled47 = AvxVector::fmadd(mid47, self.twiddles[4], twiddled47);
        let twiddled56 = AvxVector::fmadd(mid47, self.twiddles[8], twiddled56);

        let twiddled110 = AvxVector::fmadd(mid56, self.twiddles[4], twiddled110);
        let twiddled38 = AvxVector::fmadd(mid56, self.twiddles[3], twiddled38);
        let twiddled29 = AvxVector::fmadd(mid56, self.twiddles[9], twiddled29);
        let twiddled47 = AvxVector::fmadd(mid56, self.twiddles[8], twiddled47);
        let twiddled56 = AvxVector::fmadd(mid56, self.twiddles[2], twiddled56);

        // unpack the data for the last butterfly 2
        let [twiddled12, twiddled109] = AvxVector::unpack_complex([twiddled110, twiddled29]);
        let [twiddled34, twiddled87] = AvxVector::unpack_complex([twiddled38, twiddled47]);
        let [twiddled55, twiddled66] = AvxVector::unpack_complex([twiddled56, twiddled56]);

        let [output12, output109] = AvxVector::column_butterfly2([twiddled12, twiddled109]);
        let [output34, output87] = AvxVector::column_butterfly2([twiddled34, twiddled87]);
        let [output55, output66] = AvxVector::column_butterfly2([twiddled55, twiddled66]);
        let output78 = AvxVector::reverse_complex_elements(output87);
        let output910 = AvxVector::reverse_complex_elements(output109);

        buffer.store_complex(output12, 1);
        buffer.store_complex(output34, 3);
        buffer.store_partial1_complex(output55.lo(), 5);
        buffer.store_partial1_complex(output66.lo(), 6);
        buffer.store_complex(output78, 7);
        buffer.store_complex(output910, 9);
    }
}

pub struct Butterfly8Avx64<T> {
    twiddles: [__m256d; 2],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly8Avx64, 8);
impl Butterfly8Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(2, 4, 0, direction),
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly8Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        let row0 = buffer.load_complex(0);
        let row1 = buffer.load_complex(2);
        let row2 = buffer.load_complex(4);
        let row3 = buffer.load_complex(6);

        // Do our butterfly 2's down the columns of a 4x2 array
        let [mid0, mid2] = AvxVector::column_butterfly2([row0, row2]);
        let [mid1, mid3] = AvxVector::column_butterfly2([row1, row3]);

        let mid2_twiddled = AvxVector::mul_complex(mid2, self.twiddles[0]);
        let mid3_twiddled = AvxVector::mul_complex(mid3, self.twiddles[1]);

        // transpose to a 2x4 array
        let transposed =
            avx64_utils::transpose_4x2_to_2x4_f64([mid0, mid2_twiddled], [mid1, mid3_twiddled]);

        // butterfly 4's down the transposed array
        let output_rows = AvxVector::column_butterfly4(transposed, self.twiddles_butterfly4);

        buffer.store_complex(output_rows[0], 0);
        buffer.store_complex(output_rows[1], 2);
        buffer.store_complex(output_rows[2], 4);
        buffer.store_complex(output_rows[3], 6);
    }
}

pub struct Butterfly9Avx64<T> {
    twiddles: [__m256d; 2],
    twiddles_butterfly3: __m256d,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly9Avx64, 9);
impl Butterfly9Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(3, 3, 1, direction),
            twiddles_butterfly3: AvxVector::broadcast_twiddle(1, 3, direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly9Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        // we're going to load our input as a 3x3 array. We have to load 3 columns, which is a little awkward
        // We can reduce the number of multiplies we do if we load the first column as half-width and the second column as full.
        let mut rows0 = [AvxVector::zero(); 3];
        let mut rows1 = [AvxVector::zero(); 3];

        for r in 0..3 {
            rows0[r] = buffer.load_partial1_complex(3 * r);
            rows1[r] = buffer.load_complex(3 * r + 1);
        }

        // do butterfly 3's down the columns
        let mid0 = AvxVector::column_butterfly3(rows0, self.twiddles_butterfly3.lo());
        let mut mid1 = AvxVector::column_butterfly3(rows1, self.twiddles_butterfly3);

        // apply twiddle factors
        for n in 1..3 {
            mid1[n] = AvxVector::mul_complex(mid1[n], self.twiddles[n - 1]);
        }

        // transpose our 3x3 array
        let (transposed0, transposed1) = avx64_utils::transpose_3x3_f64(mid0, mid1);

        // apply butterfly 3's down the columns
        let output0 = AvxVector::column_butterfly3(transposed0, self.twiddles_butterfly3.lo());
        let output1 = AvxVector::column_butterfly3(transposed1, self.twiddles_butterfly3);

        for r in 0..3 {
            buffer.store_partial1_complex(output0[r], 3 * r);
            buffer.store_complex(output1[r], 3 * r + 1);
        }
    }
}

pub struct Butterfly12Avx64<T> {
    twiddles: [__m256d; 3],
    twiddles_butterfly3: __m256d,
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly12Avx64, 12);
impl Butterfly12Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(4, 3, 1, direction),
            twiddles_butterfly3: AvxVector::broadcast_twiddle(1, 3, direction),
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly12Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        // we're going to load our input as a 3x4 array. We have to load 3 columns, which is a little awkward
        // We can reduce the number of multiplies we do if we load the first column as half-width and the second column as full.
        let mut rows0 = [AvxVector::zero(); 4];
        let mut rows1 = [AvxVector::zero(); 4];

        for n in 0..4 {
            rows0[n] = buffer.load_partial1_complex(n * 3);
            rows1[n] = buffer.load_complex(n * 3 + 1);
        }

        // do butterfly 4's down the columns
        let mid0 = AvxVector::column_butterfly4(rows0, self.twiddles_butterfly4.lo());
        let mut mid1 = AvxVector::column_butterfly4(rows1, self.twiddles_butterfly4);

        // apply twiddle factors
        for n in 1..4 {
            mid1[n] = AvxVector::mul_complex(mid1[n], self.twiddles[n - 1]);
        }

        // transpose our 3x4 array to a 4x3 array
        let (transposed0, transposed1) = avx64_utils::transpose_3x4_to_4x3_f64(mid0, mid1);

        // apply butterfly 3's down the columns
        let output0 = AvxVector::column_butterfly3(transposed0, self.twiddles_butterfly3);
        let output1 = AvxVector::column_butterfly3(transposed1, self.twiddles_butterfly3);

        for r in 0..3 {
            buffer.store_complex(output0[r], 4 * r);
            buffer.store_complex(output1[r], 4 * r + 2);
        }
    }
}

pub struct Butterfly16Avx64<T> {
    twiddles: [__m256d; 6],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly16Avx64, 16);
impl Butterfly16Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(4, 4, 0, direction),
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly16Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        let mut rows0 = [AvxVector::zero(); 4];
        let mut rows1 = [AvxVector::zero(); 4];
        for r in 0..4 {
            rows0[r] = buffer.load_complex(4 * r);
            rows1[r] = buffer.load_complex(4 * r + 2);
        }

        // We're going to treat our input as a 4x4 2d array. First, do 4 butterfly 4's down the columns of that array.
        let mut mid0 = AvxVector::column_butterfly4(rows0, self.twiddles_butterfly4);
        let mut mid1 = AvxVector::column_butterfly4(rows1, self.twiddles_butterfly4);

        // apply twiddle factors
        for r in 1..4 {
            mid0[r] = AvxVector::mul_complex(mid0[r], self.twiddles[2 * r - 2]);
            mid1[r] = AvxVector::mul_complex(mid1[r], self.twiddles[2 * r - 1]);
        }

        // Transpose our 4x4 array
        let (transposed0, transposed1) = avx64_utils::transpose_4x4_f64(mid0, mid1);

        // Butterfly 4's down columns of the transposed array
        let output0 = AvxVector::column_butterfly4(transposed0, self.twiddles_butterfly4);
        let output1 = AvxVector::column_butterfly4(transposed1, self.twiddles_butterfly4);

        for r in 0..4 {
            buffer.store_complex(output0[r], 4 * r);
            buffer.store_complex(output1[r], 4 * r + 2);
        }
    }
}

pub struct Butterfly18Avx64<T> {
    twiddles: [__m256d; 5],
    twiddles_butterfly3: __m256d,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly18Avx64, 18);
impl Butterfly18Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(6, 3, 1, direction),
            twiddles_butterfly3: AvxVector::broadcast_twiddle(1, 3, direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly18Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        // we're going to load our input as a 3x6 array. We have to load 3 columns, which is a little awkward
        // We can reduce the number of multiplies we do if we load the first column as half-width and the second column as full.
        let mut rows0 = [AvxVector::zero(); 6];
        let mut rows1 = [AvxVector::zero(); 6];
        for n in 0..6 {
            rows0[n] = buffer.load_partial1_complex(n * 3);
            rows1[n] = buffer.load_complex(n * 3 + 1);
        }

        // do butterfly 6's down the columns
        let mid0 = AvxVector128::column_butterfly6(rows0, self.twiddles_butterfly3);
        let mut mid1 = AvxVector256::column_butterfly6(rows1, self.twiddles_butterfly3);

        // apply twiddle factors
        for n in 1..6 {
            mid1[n] = AvxVector::mul_complex(mid1[n], self.twiddles[n - 1]);
        }

        // transpose our 3x6 array to a 6x3 array
        let (transposed0, transposed1, transposed2) =
            avx64_utils::transpose_3x6_to_6x3_f64(mid0, mid1);

        // apply butterfly 3's down the columns
        let output0 = AvxVector::column_butterfly3(transposed0, self.twiddles_butterfly3);
        let output1 = AvxVector::column_butterfly3(transposed1, self.twiddles_butterfly3);
        let output2 = AvxVector::column_butterfly3(transposed2, self.twiddles_butterfly3);

        for r in 0..3 {
            buffer.store_complex(output0[r], 6 * r);
            buffer.store_complex(output1[r], 6 * r + 2);
            buffer.store_complex(output2[r], 6 * r + 4);
        }
    }
}

pub struct Butterfly24Avx64<T> {
    twiddles: [__m256d; 9],
    twiddles_butterfly3: __m256d,
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly24Avx64, 24);
impl Butterfly24Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(4, 6, 0, direction),
            twiddles_butterfly3: AvxVector::broadcast_twiddle(1, 3, direction),
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly24Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        let mut rows0 = [AvxVector::zero(); 4];
        let mut rows1 = [AvxVector::zero(); 4];
        let mut rows2 = [AvxVector::zero(); 4];
        for r in 0..4 {
            rows0[r] = buffer.load_complex(6 * r);
            rows1[r] = buffer.load_complex(6 * r + 2);
            rows2[r] = buffer.load_complex(6 * r + 4);
        }

        // We're going to treat our input as a 6x4 2d array. First, do 6 butterfly 4's down the columns of that array.
        let mut mid0 = AvxVector::column_butterfly4(rows0, self.twiddles_butterfly4);
        let mut mid1 = AvxVector::column_butterfly4(rows1, self.twiddles_butterfly4);
        let mut mid2 = AvxVector::column_butterfly4(rows2, self.twiddles_butterfly4);

        // apply twiddle factors
        for r in 1..4 {
            mid0[r] = AvxVector::mul_complex(mid0[r], self.twiddles[3 * r - 3]);
            mid1[r] = AvxVector::mul_complex(mid1[r], self.twiddles[3 * r - 2]);
            mid2[r] = AvxVector::mul_complex(mid2[r], self.twiddles[3 * r - 1]);
        }

        // Transpose our 6x4 array
        let (transposed0, transposed1) = avx64_utils::transpose_6x4_to_4x6_f64(mid0, mid1, mid2);

        // Butterfly 6's down columns of the transposed array
        let output0 = AvxVector256::column_butterfly6(transposed0, self.twiddles_butterfly3);
        let output1 = AvxVector256::column_butterfly6(transposed1, self.twiddles_butterfly3);

        for r in 0..6 {
            buffer.store_complex(output0[r], 4 * r);
            buffer.store_complex(output1[r], 4 * r + 2);
        }
    }
}

pub struct Butterfly27Avx64<T> {
    twiddles: [__m256d; 8],
    twiddles_butterfly9: [__m256d; 3],
    twiddles_butterfly9_lo: [__m256d; 2],
    twiddles_butterfly3: __m256d,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly27Avx64, 27);
impl Butterfly27Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        let twiddle1 = __m128d::broadcast_twiddle(1, 9, direction);
        let twiddle2 = __m128d::broadcast_twiddle(2, 9, direction);
        let twiddle4 = __m128d::broadcast_twiddle(4, 9, direction);

        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(3, 9, 1, direction),
            twiddles_butterfly9: [
                AvxVector::broadcast_twiddle(1, 9, direction),
                AvxVector::broadcast_twiddle(2, 9, direction),
                AvxVector::broadcast_twiddle(4, 9, direction),
            ],
            twiddles_butterfly9_lo: [
                AvxVector256::merge(twiddle1, twiddle2),
                AvxVector256::merge(twiddle2, twiddle4),
            ],
            twiddles_butterfly3: AvxVector::broadcast_twiddle(1, 3, direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly27Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        // we're going to load our input as a 9x3 array. We have to load 9 columns, which is a little awkward
        // We can reduce the number of multiplies we do if we load the first column as half-width and the remaining 4 sets of vectors as full.
        // We can't fit the whole problem into AVX registers at once, so we'll have to spill some things.
        // By computing chunks of the problem and then not referencing any of it for a while, we're making it easy for the compiler to decide what to spill
        let mut rows0 = [AvxVector::zero(); 3];
        for n in 0..3 {
            rows0[n] = buffer.load_partial1_complex(n * 9);
        }
        let mid0 = AvxVector::column_butterfly3(rows0, self.twiddles_butterfly3.lo());

        // First chunk is done and can be spilled, do 2 more chunks
        let mut rows1 = [AvxVector::zero(); 3];
        let mut rows2 = [AvxVector::zero(); 3];
        for n in 0..3 {
            rows1[n] = buffer.load_complex(n * 9 + 1);
            rows2[n] = buffer.load_complex(n * 9 + 3);
        }
        let mut mid1 = AvxVector::column_butterfly3(rows1, self.twiddles_butterfly3);
        let mut mid2 = AvxVector::column_butterfly3(rows2, self.twiddles_butterfly3);
        for r in 1..3 {
            mid1[r] = AvxVector::mul_complex(mid1[r], self.twiddles[4 * r - 4]);
            mid2[r] = AvxVector::mul_complex(mid2[r], self.twiddles[4 * r - 3]);
        }

        // First 3 chunks are done and can be spilled, do the final 2 chunks
        let mut rows3 = [AvxVector::zero(); 3];
        let mut rows4 = [AvxVector::zero(); 3];
        for n in 0..3 {
            rows3[n] = buffer.load_complex(n * 9 + 5);
            rows4[n] = buffer.load_complex(n * 9 + 7);
        }
        let mut mid3 = AvxVector::column_butterfly3(rows3, self.twiddles_butterfly3);
        let mut mid4 = AvxVector::column_butterfly3(rows4, self.twiddles_butterfly3);
        for r in 1..3 {
            mid3[r] = AvxVector::mul_complex(mid3[r], self.twiddles[4 * r - 2]);
            mid4[r] = AvxVector::mul_complex(mid4[r], self.twiddles[4 * r - 1]);
        }

        // transpose our 9x3 array to a 3x9 array
        let (transposed0, transposed1) =
            avx64_utils::transpose_9x3_to_3x9_f64(mid0, mid1, mid2, mid3, mid4);

        // apply butterfly 9's down the columns. Again, do the work in chunks to make it easier for the compiler to spill
        let output0 = AvxVector128::column_butterfly9(
            transposed0,
            self.twiddles_butterfly9_lo,
            self.twiddles_butterfly3,
        );
        for r in 0..3 {
            buffer.store_partial1_complex(output0[r * 3], 9 * r);
            buffer.store_partial1_complex(output0[r * 3 + 1], 9 * r + 3);
            buffer.store_partial1_complex(output0[r * 3 + 2], 9 * r + 6);
        }

        let output1 = AvxVector256::column_butterfly9(
            transposed1,
            self.twiddles_butterfly9,
            self.twiddles_butterfly3,
        );
        for r in 0..3 {
            buffer.store_complex(output1[r * 3], 9 * r + 1);
            buffer.store_complex(output1[r * 3 + 1], 9 * r + 4);
            buffer.store_complex(output1[r * 3 + 2], 9 * r + 7);
        }
    }
}

pub struct Butterfly32Avx64<T> {
    twiddles: [__m256d; 12],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly32Avx64, 32);
impl Butterfly32Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_interleaved_columns!(4, 8, 0, direction),
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly32Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        // We're going to treat our input as a 8x4 2d array. First, do 8 butterfly 4's down the columns of that array.
        // We can't fit the whole problem into AVX registers at once, so we'll have to spill some things.
        // By computing half of the problem and then not referencing any of it for a while, we're making it easy for the compiler to decide what to spill
        let mut rows0 = [AvxVector::zero(); 4];
        let mut rows1 = [AvxVector::zero(); 4];
        for r in 0..4 {
            rows0[r] = buffer.load_complex(8 * r);
            rows1[r] = buffer.load_complex(8 * r + 2);
        }
        let mut mid0 = AvxVector::column_butterfly4(rows0, self.twiddles_butterfly4);
        let mut mid1 = AvxVector::column_butterfly4(rows1, self.twiddles_butterfly4);
        for r in 1..4 {
            mid0[r] = AvxVector::mul_complex(mid0[r], self.twiddles[4 * r - 4]);
            mid1[r] = AvxVector::mul_complex(mid1[r], self.twiddles[4 * r - 3]);
        }

        // One half is done, so the compiler can spill everything above this. Now do the other set of columns
        let mut rows2 = [AvxVector::zero(); 4];
        let mut rows3 = [AvxVector::zero(); 4];
        for r in 0..4 {
            rows2[r] = buffer.load_complex(8 * r + 4);
            rows3[r] = buffer.load_complex(8 * r + 6);
        }
        let mut mid2 = AvxVector::column_butterfly4(rows2, self.twiddles_butterfly4);
        let mut mid3 = AvxVector::column_butterfly4(rows3, self.twiddles_butterfly4);
        for r in 1..4 {
            mid2[r] = AvxVector::mul_complex(mid2[r], self.twiddles[4 * r - 2]);
            mid3[r] = AvxVector::mul_complex(mid3[r], self.twiddles[4 * r - 1]);
        }

        // Transpose our 8x4 array to a 4x8 array
        let (transposed0, transposed1) =
            avx64_utils::transpose_8x4_to_4x8_f64(mid0, mid1, mid2, mid3);

        // Do 4 butterfly 8's down columns of the transposed array
        // Same thing as above - Do the half of the butterfly 8's separately to give the compiler a better hint about what to spill
        let output0 = AvxVector::column_butterfly8(transposed0, self.twiddles_butterfly4);
        for r in 0..8 {
            buffer.store_complex(output0[r], 4 * r);
        }
        let output1 = AvxVector::column_butterfly8(transposed1, self.twiddles_butterfly4);
        for r in 0..8 {
            buffer.store_complex(output1[r], 4 * r + 2);
        }
    }
}

pub struct Butterfly36Avx64<T> {
    twiddles: [__m256d; 15],
    twiddles_butterfly3: __m256d,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly!(Butterfly36Avx64, 36);
impl Butterfly36Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_separated_columns!(6, 6, 0, direction),
            twiddles_butterfly3: AvxVector::broadcast_twiddle(1, 3, direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly36Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn perform_fft_f64(&self, mut buffer: impl AvxArrayMut<f64>) {
        // we're going to load our input as a 6x6 array
        // We can't fit the whole problem into AVX registers at once, so we'll have to spill some things.
        // By computing chunks of the problem and then not referencing any of it for a while, we're making it easy for the compiler to decide what to spill
        let mut rows0 = [AvxVector::zero(); 6];
        for n in 0..6 {
            rows0[n] = buffer.load_complex(n * 6);
        }
        let mut mid0 = AvxVector256::column_butterfly6(rows0, self.twiddles_butterfly3);
        for r in 1..6 {
            mid0[r] = AvxVector::mul_complex(mid0[r], self.twiddles[r - 1]);
        }

        // we're going to load our input as a 6x6 array
        let mut rows1 = [AvxVector::zero(); 6];
        for n in 0..6 {
            rows1[n] = buffer.load_complex(n * 6 + 2);
        }
        let mut mid1 = AvxVector256::column_butterfly6(rows1, self.twiddles_butterfly3);
        for r in 1..6 {
            mid1[r] = AvxVector::mul_complex(mid1[r], self.twiddles[r + 4]);
        }

        // we're going to load our input as a 6x6 array
        let mut rows2 = [AvxVector::zero(); 6];
        for n in 0..6 {
            rows2[n] = buffer.load_complex(n * 6 + 4);
        }
        let mut mid2 = AvxVector256::column_butterfly6(rows2, self.twiddles_butterfly3);
        for r in 1..6 {
            mid2[r] = AvxVector::mul_complex(mid2[r], self.twiddles[r + 9]);
        }

        // Transpose our 6x6 array
        let (transposed0, transposed1, transposed2) =
            avx64_utils::transpose_6x6_f64(mid0, mid1, mid2);

        // Apply butterfly 6's down the columns.  Again, do the work in chunks to make it easier for the compiler to spill
        let output0 = AvxVector256::column_butterfly6(transposed0, self.twiddles_butterfly3);
        for r in 0..3 {
            buffer.store_complex(output0[r * 2], 12 * r);
            buffer.store_complex(output0[r * 2 + 1], 12 * r + 6);
        }

        let output1 = AvxVector256::column_butterfly6(transposed1, self.twiddles_butterfly3);
        for r in 0..3 {
            buffer.store_complex(output1[r * 2], 12 * r + 2);
            buffer.store_complex(output1[r * 2 + 1], 12 * r + 8);
        }

        let output2 = AvxVector256::column_butterfly6(transposed2, self.twiddles_butterfly3);
        for r in 0..3 {
            buffer.store_complex(output2[r * 2], 12 * r + 4);
            buffer.store_complex(output2[r * 2 + 1], 12 * r + 10);
        }
    }
}

pub struct Butterfly64Avx64<T> {
    twiddles: [__m256d; 28],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly_with_scratch!(Butterfly64Avx64, 64);
impl Butterfly64Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_separated_columns!(8, 8, 0, direction),
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly64Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn column_butterflies_and_transpose(
        &self,
        input: &[Complex<f64>],
        mut output: &mut [Complex<f64>],
    ) {
        // A size-64 FFT is way too big to fit in registers, so instead we're going to compute it in two phases, storing in scratch in between.

        // First phase is to treat this size-64 array like a 8x8 2D array, and do butterfly 8's down the columns
        // Then, apply twiddle factors, and finally transpose into the scratch space

        // But again, we don't have enough registers to load it all at once, so only load one column of AVX vectors at a time
        for columnset in 0..4 {
            let mut rows = [AvxVector::zero(); 8];
            for r in 0..8 {
                rows[r] = input.load_complex(columnset * 2 + 8 * r);
            }
            // apply butterfly 8
            let mut mid = AvxVector::column_butterfly8(rows, self.twiddles_butterfly4);

            // apply twiddle factors
            for r in 1..8 {
                mid[r] = AvxVector::mul_complex(mid[r], self.twiddles[r - 1 + 7 * columnset]);
            }

            // transpose
            let transposed = AvxVector::transpose8_packed(mid);

            // write out
            for i in 0..4 {
                output.store_complex(transposed[i * 2], columnset * 16 + i * 4);
                output.store_complex(transposed[i * 2 + 1], columnset * 16 + i * 4 + 2);
            }
        }
    }

    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn row_butterflies(&self, mut buffer: impl AvxArrayMut<f64>) {
        // Second phase: Butterfly 8's down the columns of our transposed array.
        // Thankfully, during the first phase, we set everything up so that all we have to do here is compute the size-8 FFT columns and write them back out where we got them
        for columnset in 0usize..4 {
            let mut rows = [AvxVector::zero(); 8];
            for r in 0..8 {
                rows[r] = buffer.load_complex(columnset * 2 + 8 * r);
            }
            let mid = AvxVector::column_butterfly8(rows, self.twiddles_butterfly4);
            for r in 0..8 {
                buffer.store_complex(mid[r], columnset * 2 + 8 * r);
            }
        }
    }
}

pub struct Butterfly128Avx64<T> {
    twiddles: [__m256d; 56],
    twiddles_butterfly16: [__m256d; 2],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly_with_scratch!(Butterfly128Avx64, 128);
impl Butterfly128Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_separated_columns!(8, 16, 0, direction),
            twiddles_butterfly16: [
                AvxVector::broadcast_twiddle(1, 16, direction),
                AvxVector::broadcast_twiddle(3, 16, direction),
            ],
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly128Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn column_butterflies_and_transpose(
        &self,
        input: &[Complex<f64>],
        mut output: &mut [Complex<f64>],
    ) {
        // A size-128 FFT is way too big to fit in registers, so instead we're going to compute it in two phases, storing in scratch in between.

        // First phase is to treat this size-128 array like a 16x8 2D array, and do butterfly 8's down the columns
        // Then, apply twiddle factors, and finally transpose into the scratch space

        // But again, we don't have enough registers to load it all at once, so only load one column of AVX vectors at a time
        for columnset in 0..8 {
            let mut rows = [AvxVector::zero(); 8];
            for r in 0..8 {
                rows[r] = input.load_complex(columnset * 2 + 16 * r);
            }
            // apply butterfly 8
            let mut mid = AvxVector::column_butterfly8(rows, self.twiddles_butterfly4);

            // apply twiddle factors
            for r in 1..8 {
                mid[r] = AvxVector::mul_complex(mid[r], self.twiddles[r - 1 + 7 * columnset]);
            }

            // transpose
            let transposed = AvxVector::transpose8_packed(mid);

            // write out
            for i in 0..4 {
                output.store_complex(transposed[i * 2], columnset * 16 + i * 4);
                output.store_complex(transposed[i * 2 + 1], columnset * 16 + i * 4 + 2);
            }
        }
    }

    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn row_butterflies(&self, mut buffer: impl AvxArrayMut<f64>) {
        // Second phase: Butterfly 16's down the columns of our transposed array.
        // Thankfully, during the first phase, we set everything up so that all we have to do here is compute the size-16 FFT columns and write them back out where we got them
        // We're also using a customized butterfly16 function that is smarter about when it loads/stores data, to reduce register spilling
        for columnset in 0usize..4 {
            column_butterfly16_loadfn!(
                |index: usize| buffer.load_complex(columnset * 2 + index * 8),
                |data, index| buffer.store_complex(data, columnset * 2 + index * 8),
                self.twiddles_butterfly16,
                self.twiddles_butterfly4
            );
        }
    }
}

pub struct Butterfly256Avx64<T> {
    twiddles: [__m256d; 112],
    twiddles_butterfly32: [__m256d; 6],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly_with_scratch!(Butterfly256Avx64, 256);
impl Butterfly256Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_separated_columns!(8, 32, 0, direction),
            twiddles_butterfly32: [
                AvxVector::broadcast_twiddle(1, 32, direction),
                AvxVector::broadcast_twiddle(2, 32, direction),
                AvxVector::broadcast_twiddle(3, 32, direction),
                AvxVector::broadcast_twiddle(5, 32, direction),
                AvxVector::broadcast_twiddle(6, 32, direction),
                AvxVector::broadcast_twiddle(7, 32, direction),
            ],
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly256Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn column_butterflies_and_transpose(
        &self,
        input: &[Complex<f64>],
        mut output: &mut [Complex<f64>],
    ) {
        // A size-256 FFT is way too big to fit in registers, so instead we're going to compute it in two phases, storing in scratch in between.

        // First phase is to treeat this size-256 array like a 32x8 2D array, and do butterfly 8's down the columns
        // Then, apply twiddle factors, and finally transpose into the scratch space

        // But again, we don't have enough registers to load it all at once, so only load one column of AVX vectors at a time
        for columnset in 0..16 {
            let mut rows = [AvxVector::zero(); 8];
            for r in 0..8 {
                rows[r] = input.load_complex(columnset * 2 + 32 * r);
            }
            // apply butterfly 8
            let mut mid = AvxVector::column_butterfly8(rows, self.twiddles_butterfly4);

            // apply twiddle factors
            for r in 1..8 {
                mid[r] = AvxVector::mul_complex(mid[r], self.twiddles[r - 1 + 7 * columnset]);
            }

            // transpose
            let transposed = AvxVector::transpose8_packed(mid);

            // write out
            for i in 0..4 {
                output.store_complex(transposed[i * 2], columnset * 16 + i * 4);
                output.store_complex(transposed[i * 2 + 1], columnset * 16 + i * 4 + 2);
            }
        }
    }

    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn row_butterflies(&self, mut buffer: impl AvxArrayMut<f64>) {
        // Second phase: Butterfly 32's down the columns of our transposed array.
        // Thankfully, during the first phase, we set everything up so that all we have to do here is compute the size-32 FFT columns and write them back out where we got them
        // We're also using a customized butterfly32 function that is smarter about when it loads/stores data, to reduce register spilling
        for columnset in 0usize..4 {
            column_butterfly32_loadfn!(
                |index: usize| buffer.load_complex(columnset * 2 + index * 8),
                |data, index| buffer.store_complex(data, columnset * 2 + index * 8),
                self.twiddles_butterfly32,
                self.twiddles_butterfly4
            );
        }
    }
}

pub struct Butterfly512Avx64<T> {
    twiddles: [__m256d; 240],
    twiddles_butterfly32: [__m256d; 6],
    twiddles_butterfly16: [__m256d; 2],
    twiddles_butterfly4: Rotation90<__m256d>,
    direction: FftDirection,
    _phantom_t: std::marker::PhantomData<T>,
}
boilerplate_fft_simd_butterfly_with_scratch!(Butterfly512Avx64, 512);
impl Butterfly512Avx64<f64> {
    #[target_feature(enable = "avx")]
    unsafe fn new_with_avx(direction: FftDirection) -> Self {
        Self {
            twiddles: gen_butterfly_twiddles_separated_columns!(16, 32, 0, direction),
            twiddles_butterfly32: [
                AvxVector::broadcast_twiddle(1, 32, direction),
                AvxVector::broadcast_twiddle(2, 32, direction),
                AvxVector::broadcast_twiddle(3, 32, direction),
                AvxVector::broadcast_twiddle(5, 32, direction),
                AvxVector::broadcast_twiddle(6, 32, direction),
                AvxVector::broadcast_twiddle(7, 32, direction),
            ],
            twiddles_butterfly16: [
                AvxVector::broadcast_twiddle(1, 16, direction),
                AvxVector::broadcast_twiddle(3, 16, direction),
            ],
            twiddles_butterfly4: AvxVector::make_rotation90(direction),
            direction,
            _phantom_t: PhantomData,
        }
    }
}
impl<T> Butterfly512Avx64<T> {
    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn column_butterflies_and_transpose(
        &self,
        input: &[Complex<f64>],
        mut output: &mut [Complex<f64>],
    ) {
        // A size-512 FFT is way too big to fit in registers, so instead we're going to compute it in two phases, storing in scratch in between.

        // First phase is to treat this size-512 array like a 32x16 2D array, and do butterfly 16's down the columns
        // Then, apply twiddle factors, and finally transpose into the scratch space

        // But again, we don't have enough registers to load it all at once, so only load one column of AVX vectors at a time
        // We're also using a customized butterfly16 function that is smarter about when it loads/stores data, to reduce register spilling
        const TWIDDLES_PER_COLUMN: usize = 15;
        for (columnset, twiddle_chunk) in
            self.twiddles.chunks_exact(TWIDDLES_PER_COLUMN).enumerate()
        {
            // Sadly we have to use MaybeUninit here. If we init an array like normal with AvxVector::Zero(), the compiler can't seem to figure out that it can
            // eliminate the dead stores of zeroes to the stack. By using uninit here, we avoid those unnecessary writes
            let mut mid_uninit: [MaybeUninit<__m256d>; 16] = [MaybeUninit::<__m256d>::uninit(); 16];

            column_butterfly16_loadfn!(
                |index: usize| input.load_complex(columnset * 2 + 32 * index),
                |data, index: usize| {
                    mid_uninit[index].as_mut_ptr().write(data);
                },
                self.twiddles_butterfly16,
                self.twiddles_butterfly4
            );

            // Apply twiddle factors, transpose, and store. Traditionally we apply all the twiddle factors at once and then do all the transposes at once,
            // But our data is pushing the limit of what we can store in registers, so the idea here is to get the data out the door with as few spills to the stack as possible
            for chunk in 0..4 {
                let twiddled = [
                    if chunk > 0 {
                        AvxVector::mul_complex(
                            mid_uninit[4 * chunk].assume_init(),
                            twiddle_chunk[4 * chunk - 1],
                        )
                    } else {
                        mid_uninit[4 * chunk].assume_init()
                    },
                    AvxVector::mul_complex(
                        mid_uninit[4 * chunk + 1].assume_init(),
                        twiddle_chunk[4 * chunk],
                    ),
                    AvxVector::mul_complex(
                        mid_uninit[4 * chunk + 2].assume_init(),
                        twiddle_chunk[4 * chunk + 1],
                    ),
                    AvxVector::mul_complex(
                        mid_uninit[4 * chunk + 3].assume_init(),
                        twiddle_chunk[4 * chunk + 2],
                    ),
                ];

                let transposed = AvxVector::transpose4_packed(twiddled);

                output.store_complex(transposed[0], columnset * 32 + 4 * chunk);
                output.store_complex(transposed[1], columnset * 32 + 4 * chunk + 2);
                output.store_complex(transposed[2], columnset * 32 + 4 * chunk + 16);
                output.store_complex(transposed[3], columnset * 32 + 4 * chunk + 18);
            }
        }
    }

    #[target_feature(enable = "avx", enable = "fma")]
    unsafe fn row_butterflies(&self, mut buffer: impl AvxArrayMut<f64>) {
        // Second phase: Butterfly 32's down the columns of our transposed array.
        // Thankfully, during the first phase, we set everything up so that all we have to do here is compute the size-32 FFT columns and write them back out where we got them
        // We're also using a customized butterfly32 function that is smarter about when it loads/stores data, to reduce register spilling
        for columnset in 0usize..8 {
            column_butterfly32_loadfn!(
                |index: usize| buffer.load_complex(columnset * 2 + index * 16),
                |data, index| buffer.store_complex(data, columnset * 2 + index * 16),
                self.twiddles_butterfly32,
                self.twiddles_butterfly4
            );
        }
    }
}

#[cfg(test)]
mod unit_tests {
    use super::*;
    use crate::test_utils::check_fft_algorithm;

    macro_rules! test_avx_butterfly {
        ($test_name:ident, $struct_name:ident, $size:expr) => (
            #[test]
            fn $test_name() {
                let butterfly = $struct_name::new(FftDirection::Forward).expect("Can't run test because this machine doesn't have the required instruction sets");
                check_fft_algorithm(&butterfly as &dyn Fft<f64>, $size, FftDirection::Forward);

                let butterfly_inverse = $struct_name::new(FftDirection::Inverse).expect("Can't run test because this machine doesn't have the required instruction sets");
                check_fft_algorithm(&butterfly_inverse as &dyn Fft<f64>, $size, FftDirection::Inverse);
            }
        )
    }

    test_avx_butterfly!(test_avx_butterfly5_f64, Butterfly5Avx64, 5);
    test_avx_butterfly!(test_avx_butterfly7_f64, Butterfly7Avx64, 7);
    test_avx_butterfly!(test_avx_mixedradix8_f64, Butterfly8Avx64, 8);
    test_avx_butterfly!(test_avx_mixedradix9_f64, Butterfly9Avx64, 9);
    test_avx_butterfly!(test_avx_mixedradix11_f64, Butterfly11Avx64, 11);
    test_avx_butterfly!(test_avx_mixedradix12_f64, Butterfly12Avx64, 12);
    test_avx_butterfly!(test_avx_mixedradix16_f64, Butterfly16Avx64, 16);
    test_avx_butterfly!(test_avx_mixedradix18_f64, Butterfly18Avx64, 18);
    test_avx_butterfly!(test_avx_mixedradix24_f64, Butterfly24Avx64, 24);
    test_avx_butterfly!(test_avx_mixedradix27_f64, Butterfly27Avx64, 27);
    test_avx_butterfly!(test_avx_mixedradix32_f64, Butterfly32Avx64, 32);
    test_avx_butterfly!(test_avx_mixedradix36_f64, Butterfly36Avx64, 36);
    test_avx_butterfly!(test_avx_mixedradix64_f64, Butterfly64Avx64, 64);
    test_avx_butterfly!(test_avx_mixedradix128_f64, Butterfly128Avx64, 128);
    test_avx_butterfly!(test_avx_mixedradix256_f64, Butterfly256Avx64, 256);
    test_avx_butterfly!(test_avx_mixedradix512_f64, Butterfly512Avx64, 512);
}