rustfft/algorithm/radix3.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
use std::sync::Arc;
use num_complex::Complex;
use num_traits::Zero;
use crate::algorithm::butterflies::{Butterfly1, Butterfly27, Butterfly3, Butterfly9};
use crate::array_utils;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{common::FftNum, twiddles, FftDirection};
use crate::{Direction, Fft, Length};
/// FFT algorithm optimized for power-of-three sizes
///
/// ~~~
/// // Computes a forward FFT of size 2187
/// use rustfft::algorithm::Radix3;
/// use rustfft::{Fft, FftDirection};
/// use rustfft::num_complex::Complex;
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 2187];
///
/// let fft = Radix3::new(2187, FftDirection::Forward);
/// fft.process(&mut buffer);
/// ~~~
pub struct Radix3<T> {
twiddles: Box<[Complex<T>]>,
butterfly3: Butterfly3<T>,
base_fft: Arc<dyn Fft<T>>,
base_len: usize,
len: usize,
direction: FftDirection,
}
impl<T: FftNum> Radix3<T> {
/// Preallocates necessary arrays and precomputes necessary data to efficiently compute the power-of-three FFT
pub fn new(len: usize, direction: FftDirection) -> Self {
// Compute the total power of 3 for this length. IE, len = 3^exponent
let exponent = compute_logarithm(len, 3).unwrap_or_else(|| {
panic!(
"Radix3 algorithm requires a power-of-three input size. Got {}",
len
)
});
// figure out which base length we're going to use
let (base_len, base_fft) = match exponent {
0 => (len, Arc::new(Butterfly1::new(direction)) as Arc<dyn Fft<T>>),
1 => (len, Arc::new(Butterfly3::new(direction)) as Arc<dyn Fft<T>>),
2 => (len, Arc::new(Butterfly9::new(direction)) as Arc<dyn Fft<T>>),
_ => (27, Arc::new(Butterfly27::new(direction)) as Arc<dyn Fft<T>>),
};
// precompute the twiddle factors this algorithm will use.
// we're doing the same precomputation of twiddle factors as the mixed radix algorithm where width=3 and height=len/3
// but mixed radix only does one step and then calls itself recusrively, and this algorithm does every layer all the way down
// so we're going to pack all the "layers" of twiddle factors into a single array, starting with the bottom layer and going up
let mut twiddle_stride = len / (base_len * 3);
let mut twiddle_factors = Vec::with_capacity(len * 2);
while twiddle_stride > 0 {
let num_rows = len / (twiddle_stride * 3);
for i in 0..num_rows {
for k in 1..3 {
let twiddle = twiddles::compute_twiddle(i * k * twiddle_stride, len, direction);
twiddle_factors.push(twiddle);
}
}
twiddle_stride /= 3;
}
Self {
twiddles: twiddle_factors.into_boxed_slice(),
butterfly3: Butterfly3::new(direction),
base_fft,
base_len,
len,
direction,
}
}
fn perform_fft_out_of_place(
&self,
signal: &[Complex<T>],
spectrum: &mut [Complex<T>],
_scratch: &mut [Complex<T>],
) {
// copy the data into the spectrum vector
if self.len() == self.base_len {
spectrum.copy_from_slice(signal);
} else {
bitreversed_transpose(self.base_len, signal, spectrum);
}
// Base-level FFTs
self.base_fft.process_with_scratch(spectrum, &mut []);
// cross-FFTs
let mut current_size = self.base_len * 3;
let mut layer_twiddles: &[Complex<T>] = &self.twiddles;
while current_size <= signal.len() {
let num_rows = signal.len() / current_size;
for i in 0..num_rows {
unsafe {
butterfly_3(
&mut spectrum[i * current_size..],
layer_twiddles,
current_size / 3,
&self.butterfly3,
)
}
}
//skip past all the twiddle factors used in this layer
let twiddle_offset = (current_size * 2) / 3;
layer_twiddles = &layer_twiddles[twiddle_offset..];
current_size *= 3;
}
}
}
boilerplate_fft_oop!(Radix3, |this: &Radix3<_>| this.len);
// Preparing for radix 3 is similar to a transpose, where the column index is bit reversed.
// Use a lookup table to avoid repeating the slow bit reverse operations.
// Unrolling the outer loop by a factor 4 helps speed things up.
pub fn bitreversed_transpose<T: Copy>(height: usize, input: &[T], output: &mut [T]) {
let width = input.len() / height;
let third_width = width / 3;
let rev_digits = compute_logarithm(width, 3).unwrap();
// Let's make sure the arguments are ok
assert!(input.len() == output.len());
for x in 0..third_width {
let x0 = 3 * x;
let x1 = 3 * x + 1;
let x2 = 3 * x + 2;
let x_rev = [
reverse_bits(x0, rev_digits),
reverse_bits(x1, rev_digits),
reverse_bits(x2, rev_digits),
];
// Assert that the the bit reversed indices will not exceed the length of the output.
// The highest index the loop reaches is: (x_rev[n] + 1)*height - 1
// The last element of the data is at index: width*height - 1
// Thus it is sufficient to assert that x_rev[n]<width.
assert!(x_rev[0] < width && x_rev[1] < width && x_rev[2] < width);
for y in 0..height {
let input_index0 = x0 + y * width;
let input_index1 = x1 + y * width;
let input_index2 = x2 + y * width;
let output_index0 = y + x_rev[0] * height;
let output_index1 = y + x_rev[1] * height;
let output_index2 = y + x_rev[2] * height;
unsafe {
let temp0 = *input.get_unchecked(input_index0);
let temp1 = *input.get_unchecked(input_index1);
let temp2 = *input.get_unchecked(input_index2);
*output.get_unchecked_mut(output_index0) = temp0;
*output.get_unchecked_mut(output_index1) = temp1;
*output.get_unchecked_mut(output_index2) = temp2;
}
}
}
}
// computes `n` such that `base ^ n == value`. Returns `None` if `value` is not a perfect power of `base`, otherwise returns `Some(n)`
fn compute_logarithm(value: usize, base: usize) -> Option<usize> {
if value == 0 || base == 0 {
return None;
}
let mut current_exponent = 0;
let mut current_value = value;
while current_value % base == 0 {
current_exponent += 1;
current_value /= base;
}
if current_value == 1 {
Some(current_exponent)
} else {
None
}
}
// Sort of like reversing bits in radix4. We're not actually reversing bits, but the algorithm is exactly the same.
// Radix4's bit reversal does divisions by 4, multiplications by 4, and modulo 4 - all of which are easily represented by bit manipulation.
// As a result, it can be thought of as a bit reversal. But really, the "bit reversal"-ness of it is a special case of a more general "remainder reversal"
// IE, it's repeatedly taking the remainder of dividing by N, and building a new number where those remainders are reversed.
// So this algorithm does all the things that bit reversal does, but replaces the multiplications by 4 with multiplications by 3, etc, and ends up with the same conceptual result as a bit reversal.
pub fn reverse_bits(value: usize, reversal_iters: usize) -> usize {
let mut result: usize = 0;
let mut value = value;
for _ in 0..reversal_iters {
result = (result * 3) + (value % 3);
value /= 3;
}
result
}
unsafe fn butterfly_3<T: FftNum>(
data: &mut [Complex<T>],
twiddles: &[Complex<T>],
num_ffts: usize,
butterfly3: &Butterfly3<T>,
) {
let mut idx = 0usize;
let mut tw_idx = 0usize;
let mut scratch = [Zero::zero(); 3];
for _ in 0..num_ffts {
scratch[0] = *data.get_unchecked(idx);
scratch[1] = *data.get_unchecked(idx + 1 * num_ffts) * twiddles[tw_idx];
scratch[2] = *data.get_unchecked(idx + 2 * num_ffts) * twiddles[tw_idx + 1];
butterfly3.perform_fft_butterfly(&mut scratch);
*data.get_unchecked_mut(idx) = scratch[0];
*data.get_unchecked_mut(idx + 1 * num_ffts) = scratch[1];
*data.get_unchecked_mut(idx + 2 * num_ffts) = scratch[2];
tw_idx += 2;
idx += 1;
}
}
#[cfg(test)]
mod unit_tests {
use super::*;
use crate::test_utils::check_fft_algorithm;
#[test]
fn test_radix3() {
for pow in 0..8 {
let len = 3usize.pow(pow);
test_3adix3_with_length(len, FftDirection::Forward);
test_3adix3_with_length(len, FftDirection::Inverse);
}
}
fn test_3adix3_with_length(len: usize, direction: FftDirection) {
let fft = Radix3::new(len, direction);
check_fft_algorithm::<f32>(&fft, len, direction);
}
}