rustfft/algorithm/
raders_algorithm.rs

1use std::sync::Arc;
2
3use num_complex::Complex;
4use num_integer::Integer;
5use num_traits::Zero;
6use primal_check::miller_rabin;
7use strength_reduce::StrengthReducedUsize;
8
9use crate::array_utils;
10use crate::common::{fft_error_inplace, fft_error_outofplace};
11use crate::math_utils;
12use crate::{common::FftNum, twiddles, FftDirection};
13use crate::{Direction, Fft, Length};
14
15/// Implementation of Rader's Algorithm
16///
17/// This algorithm computes a prime-sized FFT in O(nlogn) time. It does this by converting this size-N FFT into a
18/// size-(N - 1) FFT, which is guaranteed to be composite.
19///
20/// The worst case for this algorithm is when (N - 1) is 2 * prime, resulting in a
21/// [Cunningham Chain](https://en.wikipedia.org/wiki/Cunningham_chain)
22///
23/// ~~~
24/// // Computes a forward FFT of size 1201 (prime number), using Rader's Algorithm
25/// use rustfft::algorithm::RadersAlgorithm;
26/// use rustfft::{Fft, FftPlanner};
27/// use rustfft::num_complex::Complex;
28///
29/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 1201];
30///
31/// // plan a FFT of size n - 1 = 1200
32/// let mut planner = FftPlanner::new();
33/// let inner_fft = planner.plan_fft_forward(1200);
34///
35/// let fft = RadersAlgorithm::new(inner_fft);
36/// fft.process(&mut buffer);
37/// ~~~
38///
39/// Rader's Algorithm is relatively expensive compared to other FFT algorithms. Benchmarking shows that it is up to
40/// an order of magnitude slower than similar composite sizes. In the example size above of 1201, benchmarking shows
41/// that it takes 2.5x more time to compute than a FFT of size 1200.
42
43pub struct RadersAlgorithm<T> {
44    inner_fft: Arc<dyn Fft<T>>,
45    inner_fft_data: Box<[Complex<T>]>,
46
47    primitive_root: usize,
48    primitive_root_inverse: usize,
49
50    len: StrengthReducedUsize,
51    inplace_scratch_len: usize,
52    outofplace_scratch_len: usize,
53    direction: FftDirection,
54}
55
56impl<T: FftNum> RadersAlgorithm<T> {
57    /// Creates a FFT instance which will process inputs/outputs of size `inner_fft.len() + 1`.
58    ///
59    /// Note that this constructor is quite expensive to run; This algorithm must compute a FFT using `inner_fft` within the
60    /// constructor. This further underlines the fact that Rader's Algorithm is more expensive to run than other
61    /// FFT algorithms
62    ///
63    /// # Panics
64    /// Panics if `inner_fft.len() + 1` is not a prime number.
65    pub fn new(inner_fft: Arc<dyn Fft<T>>) -> Self {
66        let inner_fft_len = inner_fft.len();
67        let len = inner_fft_len + 1;
68        assert!(miller_rabin(len as u64), "For raders algorithm, inner_fft.len() + 1 must be prime. Expected prime number, got {} + 1 = {}", inner_fft_len, len);
69
70        let direction = inner_fft.fft_direction();
71        let reduced_len = StrengthReducedUsize::new(len);
72
73        // compute the primitive root and its inverse for this size
74        let primitive_root = math_utils::primitive_root(len as u64).unwrap() as usize;
75
76        // compute the multiplicative inverse of primative_root mod len and vice versa.
77        // i64::extended_gcd will compute both the inverse of left mod right, and the inverse of right mod left, but we're only goingto use one of them
78        // the primtive root inverse might be negative, if o make it positive by wrapping
79        let gcd_data = i64::extended_gcd(&(primitive_root as i64), &(len as i64));
80        let primitive_root_inverse = if gcd_data.x >= 0 {
81            gcd_data.x
82        } else {
83            gcd_data.x + len as i64
84        } as usize;
85
86        // precompute the coefficients to use inside the process method
87        let inner_fft_scale = T::one() / T::from_usize(inner_fft_len).unwrap();
88        let mut inner_fft_input = vec![Complex::zero(); inner_fft_len];
89        let mut twiddle_input = 1;
90        for input_cell in &mut inner_fft_input {
91            let twiddle = twiddles::compute_twiddle(twiddle_input, len, direction);
92            *input_cell = twiddle * inner_fft_scale;
93
94            twiddle_input = (twiddle_input * primitive_root_inverse) % reduced_len;
95        }
96
97        let required_inner_scratch = inner_fft.get_inplace_scratch_len();
98        let extra_inner_scratch = if required_inner_scratch <= inner_fft_len {
99            0
100        } else {
101            required_inner_scratch
102        };
103
104        //precompute a FFT of our reordered twiddle factors
105        let mut inner_fft_scratch = vec![Zero::zero(); required_inner_scratch];
106        inner_fft.process_with_scratch(&mut inner_fft_input, &mut inner_fft_scratch);
107
108        Self {
109            inner_fft,
110            inner_fft_data: inner_fft_input.into_boxed_slice(),
111
112            primitive_root,
113            primitive_root_inverse,
114
115            len: reduced_len,
116            inplace_scratch_len: inner_fft_len + extra_inner_scratch,
117            outofplace_scratch_len: extra_inner_scratch,
118            direction,
119        }
120    }
121
122    fn perform_fft_out_of_place(
123        &self,
124        input: &mut [Complex<T>],
125        output: &mut [Complex<T>],
126        scratch: &mut [Complex<T>],
127    ) {
128        // The first output element is just the sum of all the input elements, and we need to store off the first input value
129        let (output_first, output) = output.split_first_mut().unwrap();
130        let (input_first, input) = input.split_first_mut().unwrap();
131
132        // copy the input into the output, reordering as we go. also compute a sum of all elements
133        let mut input_index = 1;
134        for output_element in output.iter_mut() {
135            input_index = (input_index * self.primitive_root) % self.len;
136
137            let input_element = input[input_index - 1];
138            *output_element = input_element;
139        }
140
141        // perform the first of two inner FFTs
142        let inner_scratch = if scratch.len() > 0 {
143            &mut scratch[..]
144        } else {
145            &mut input[..]
146        };
147        self.inner_fft.process_with_scratch(output, inner_scratch);
148
149        // output[0] now contains the sum of elements 1..len. We need the sum of all elements, so all we have to do is add the first input
150        *output_first = *input_first + output[0];
151
152        // multiply the inner result with our cached setup data
153        // also conjugate every entry. this sets us up to do an inverse FFT
154        // (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
155        for ((output_cell, input_cell), &multiple) in output
156            .iter()
157            .zip(input.iter_mut())
158            .zip(self.inner_fft_data.iter())
159        {
160            *input_cell = (*output_cell * multiple).conj();
161        }
162
163        // We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
164        // Of course, we have to conjugate it, just like we conjugated the complex multiplied above
165        input[0] = input[0] + input_first.conj();
166
167        // execute the second FFT
168        let inner_scratch = if scratch.len() > 0 {
169            scratch
170        } else {
171            &mut output[..]
172        };
173        self.inner_fft.process_with_scratch(input, inner_scratch);
174
175        // copy the final values into the output, reordering as we go
176        let mut output_index = 1;
177        for input_element in input {
178            output_index = (output_index * self.primitive_root_inverse) % self.len;
179            output[output_index - 1] = input_element.conj();
180        }
181    }
182    fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
183        // The first output element is just the sum of all the input elements, and we need to store off the first input value
184        let (buffer_first, buffer) = buffer.split_first_mut().unwrap();
185        let buffer_first_val = *buffer_first;
186
187        let (scratch, extra_scratch) = scratch.split_at_mut(self.len() - 1);
188
189        // copy the buffer into the scratch, reordering as we go. also compute a sum of all elements
190        let mut input_index = 1;
191        for scratch_element in scratch.iter_mut() {
192            input_index = (input_index * self.primitive_root) % self.len;
193
194            let buffer_element = buffer[input_index - 1];
195            *scratch_element = buffer_element;
196        }
197
198        // perform the first of two inner FFTs
199        let inner_scratch = if extra_scratch.len() > 0 {
200            extra_scratch
201        } else {
202            &mut buffer[..]
203        };
204        self.inner_fft.process_with_scratch(scratch, inner_scratch);
205
206        // scratch[0] now contains the sum of elements 1..len. We need the sum of all elements, so all we have to do is add the first input
207        *buffer_first = *buffer_first + scratch[0];
208
209        // multiply the inner result with our cached setup data
210        // also conjugate every entry. this sets us up to do an inverse FFT
211        // (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
212        for (scratch_cell, &twiddle) in scratch.iter_mut().zip(self.inner_fft_data.iter()) {
213            *scratch_cell = (*scratch_cell * twiddle).conj();
214        }
215
216        // We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
217        // Of course, we have to conjugate it, just like we conjugated the complex multiplied above
218        scratch[0] = scratch[0] + buffer_first_val.conj();
219
220        // execute the second FFT
221        self.inner_fft.process_with_scratch(scratch, inner_scratch);
222
223        // copy the final values into the output, reordering as we go
224        let mut output_index = 1;
225        for scratch_element in scratch {
226            output_index = (output_index * self.primitive_root_inverse) % self.len;
227            buffer[output_index - 1] = scratch_element.conj();
228        }
229    }
230}
231boilerplate_fft!(
232    RadersAlgorithm,
233    |this: &RadersAlgorithm<_>| this.len.get(),
234    |this: &RadersAlgorithm<_>| this.inplace_scratch_len,
235    |this: &RadersAlgorithm<_>| this.outofplace_scratch_len
236);
237
238#[cfg(test)]
239mod unit_tests {
240    use super::*;
241    use crate::algorithm::Dft;
242    use crate::test_utils::check_fft_algorithm;
243    use std::sync::Arc;
244
245    #[test]
246    fn test_raders() {
247        for len in 3..100 {
248            if miller_rabin(len as u64) {
249                test_raders_with_length(len, FftDirection::Forward);
250                test_raders_with_length(len, FftDirection::Inverse);
251            }
252        }
253    }
254
255    fn test_raders_with_length(len: usize, direction: FftDirection) {
256        let inner_fft = Arc::new(Dft::new(len - 1, direction));
257        let fft = RadersAlgorithm::new(inner_fft);
258
259        check_fft_algorithm::<f32>(&fft, len, direction);
260    }
261}