rustfft/algorithm/raders_algorithm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
use std::sync::Arc;
use num_complex::Complex;
use num_integer::Integer;
use num_traits::Zero;
use primal_check::miller_rabin;
use strength_reduce::StrengthReducedUsize;
use crate::array_utils;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::math_utils;
use crate::{common::FftNum, twiddles, FftDirection};
use crate::{Direction, Fft, Length};
/// Implementation of Rader's Algorithm
///
/// This algorithm computes a prime-sized FFT in O(nlogn) time. It does this by converting this size-N FFT into a
/// size-(N - 1) FFT, which is guaranteed to be composite.
///
/// The worst case for this algorithm is when (N - 1) is 2 * prime, resulting in a
/// [Cunningham Chain](https://en.wikipedia.org/wiki/Cunningham_chain)
///
/// ~~~
/// // Computes a forward FFT of size 1201 (prime number), using Rader's Algorithm
/// use rustfft::algorithm::RadersAlgorithm;
/// use rustfft::{Fft, FftPlanner};
/// use rustfft::num_complex::Complex;
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 1201];
///
/// // plan a FFT of size n - 1 = 1200
/// let mut planner = FftPlanner::new();
/// let inner_fft = planner.plan_fft_forward(1200);
///
/// let fft = RadersAlgorithm::new(inner_fft);
/// fft.process(&mut buffer);
/// ~~~
///
/// Rader's Algorithm is relatively expensive compared to other FFT algorithms. Benchmarking shows that it is up to
/// an order of magnitude slower than similar composite sizes. In the example size above of 1201, benchmarking shows
/// that it takes 2.5x more time to compute than a FFT of size 1200.
pub struct RadersAlgorithm<T> {
inner_fft: Arc<dyn Fft<T>>,
inner_fft_data: Box<[Complex<T>]>,
primitive_root: usize,
primitive_root_inverse: usize,
len: StrengthReducedUsize,
inplace_scratch_len: usize,
outofplace_scratch_len: usize,
direction: FftDirection,
}
impl<T: FftNum> RadersAlgorithm<T> {
/// Creates a FFT instance which will process inputs/outputs of size `inner_fft.len() + 1`.
///
/// Note that this constructor is quite expensive to run; This algorithm must compute a FFT using `inner_fft` within the
/// constructor. This further underlines the fact that Rader's Algorithm is more expensive to run than other
/// FFT algorithms
///
/// # Panics
/// Panics if `inner_fft.len() + 1` is not a prime number.
pub fn new(inner_fft: Arc<dyn Fft<T>>) -> Self {
let inner_fft_len = inner_fft.len();
let len = inner_fft_len + 1;
assert!(miller_rabin(len as u64), "For raders algorithm, inner_fft.len() + 1 must be prime. Expected prime number, got {} + 1 = {}", inner_fft_len, len);
let direction = inner_fft.fft_direction();
let reduced_len = StrengthReducedUsize::new(len);
// compute the primitive root and its inverse for this size
let primitive_root = math_utils::primitive_root(len as u64).unwrap() as usize;
// compute the multiplicative inverse of primative_root mod len and vice versa.
// i64::extended_gcd will compute both the inverse of left mod right, and the inverse of right mod left, but we're only goingto use one of them
// the primtive root inverse might be negative, if o make it positive by wrapping
let gcd_data = i64::extended_gcd(&(primitive_root as i64), &(len as i64));
let primitive_root_inverse = if gcd_data.x >= 0 {
gcd_data.x
} else {
gcd_data.x + len as i64
} as usize;
// precompute the coefficients to use inside the process method
let inner_fft_scale = T::one() / T::from_usize(inner_fft_len).unwrap();
let mut inner_fft_input = vec![Complex::zero(); inner_fft_len];
let mut twiddle_input = 1;
for input_cell in &mut inner_fft_input {
let twiddle = twiddles::compute_twiddle(twiddle_input, len, direction);
*input_cell = twiddle * inner_fft_scale;
twiddle_input = (twiddle_input * primitive_root_inverse) % reduced_len;
}
let required_inner_scratch = inner_fft.get_inplace_scratch_len();
let extra_inner_scratch = if required_inner_scratch <= inner_fft_len {
0
} else {
required_inner_scratch
};
//precompute a FFT of our reordered twiddle factors
let mut inner_fft_scratch = vec![Zero::zero(); required_inner_scratch];
inner_fft.process_with_scratch(&mut inner_fft_input, &mut inner_fft_scratch);
Self {
inner_fft,
inner_fft_data: inner_fft_input.into_boxed_slice(),
primitive_root,
primitive_root_inverse,
len: reduced_len,
inplace_scratch_len: inner_fft_len + extra_inner_scratch,
outofplace_scratch_len: extra_inner_scratch,
direction,
}
}
fn perform_fft_out_of_place(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
scratch: &mut [Complex<T>],
) {
// The first output element is just the sum of all the input elements, and we need to store off the first input value
let (output_first, output) = output.split_first_mut().unwrap();
let (input_first, input) = input.split_first_mut().unwrap();
// copy the input into the output, reordering as we go. also compute a sum of all elements
let mut input_index = 1;
for output_element in output.iter_mut() {
input_index = (input_index * self.primitive_root) % self.len;
let input_element = input[input_index - 1];
*output_element = input_element;
}
// perform the first of two inner FFTs
let inner_scratch = if scratch.len() > 0 {
&mut scratch[..]
} else {
&mut input[..]
};
self.inner_fft.process_with_scratch(output, inner_scratch);
// output[0] now contains the sum of elements 1..len. We need the sum of all elements, so all we have to do is add the first input
*output_first = *input_first + output[0];
// multiply the inner result with our cached setup data
// also conjugate every entry. this sets us up to do an inverse FFT
// (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
for ((output_cell, input_cell), &multiple) in output
.iter()
.zip(input.iter_mut())
.zip(self.inner_fft_data.iter())
{
*input_cell = (*output_cell * multiple).conj();
}
// We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
// Of course, we have to conjugate it, just like we conjugated the complex multiplied above
input[0] = input[0] + input_first.conj();
// execute the second FFT
let inner_scratch = if scratch.len() > 0 {
scratch
} else {
&mut output[..]
};
self.inner_fft.process_with_scratch(input, inner_scratch);
// copy the final values into the output, reordering as we go
let mut output_index = 1;
for input_element in input {
output_index = (output_index * self.primitive_root_inverse) % self.len;
output[output_index - 1] = input_element.conj();
}
}
fn perform_fft_inplace(&self, buffer: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
// The first output element is just the sum of all the input elements, and we need to store off the first input value
let (buffer_first, buffer) = buffer.split_first_mut().unwrap();
let buffer_first_val = *buffer_first;
let (scratch, extra_scratch) = scratch.split_at_mut(self.len() - 1);
// copy the buffer into the scratch, reordering as we go. also compute a sum of all elements
let mut input_index = 1;
for scratch_element in scratch.iter_mut() {
input_index = (input_index * self.primitive_root) % self.len;
let buffer_element = buffer[input_index - 1];
*scratch_element = buffer_element;
}
// perform the first of two inner FFTs
let inner_scratch = if extra_scratch.len() > 0 {
extra_scratch
} else {
&mut buffer[..]
};
self.inner_fft.process_with_scratch(scratch, inner_scratch);
// scratch[0] now contains the sum of elements 1..len. We need the sum of all elements, so all we have to do is add the first input
*buffer_first = *buffer_first + scratch[0];
// multiply the inner result with our cached setup data
// also conjugate every entry. this sets us up to do an inverse FFT
// (because an inverse FFT is equivalent to a normal FFT where you conjugate both the inputs and outputs)
for (scratch_cell, &twiddle) in scratch.iter_mut().zip(self.inner_fft_data.iter()) {
*scratch_cell = (*scratch_cell * twiddle).conj();
}
// We need to add the first input value to all output values. We can accomplish this by adding it to the DC input of our inner ifft.
// Of course, we have to conjugate it, just like we conjugated the complex multiplied above
scratch[0] = scratch[0] + buffer_first_val.conj();
// execute the second FFT
self.inner_fft.process_with_scratch(scratch, inner_scratch);
// copy the final values into the output, reordering as we go
let mut output_index = 1;
for scratch_element in scratch {
output_index = (output_index * self.primitive_root_inverse) % self.len;
buffer[output_index - 1] = scratch_element.conj();
}
}
}
boilerplate_fft!(
RadersAlgorithm,
|this: &RadersAlgorithm<_>| this.len.get(),
|this: &RadersAlgorithm<_>| this.inplace_scratch_len,
|this: &RadersAlgorithm<_>| this.outofplace_scratch_len
);
#[cfg(test)]
mod unit_tests {
use super::*;
use crate::algorithm::Dft;
use crate::test_utils::check_fft_algorithm;
use std::sync::Arc;
#[test]
fn test_raders() {
for len in 3..100 {
if miller_rabin(len as u64) {
test_raders_with_length(len, FftDirection::Forward);
test_raders_with_length(len, FftDirection::Inverse);
}
}
}
fn test_raders_with_length(len: usize, direction: FftDirection) {
let inner_fft = Arc::new(Dft::new(len - 1, direction));
let fft = RadersAlgorithm::new(inner_fft);
check_fft_algorithm::<f32>(&fft, len, direction);
}
}