rustfft/algorithm/bluesteins_algorithm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
use std::sync::Arc;
use num_complex::Complex;
use num_traits::Zero;
use crate::array_utils;
use crate::common::{fft_error_inplace, fft_error_outofplace};
use crate::{common::FftNum, twiddles, FftDirection};
use crate::{Direction, Fft, Length};
/// Implementation of Bluestein's Algorithm
///
/// This algorithm computes an arbitrary-sized FFT in O(nlogn) time. It does this by converting this size-N FFT into a
/// size-M FFT where M >= 2N - 1.
///
/// The choice of M is very important for the performance of Bluestein's Algorithm. The most obvious choice is the next-largest
/// power of two -- but if there's a smaller/faster FFT size that satisfies the `>= 2N - 1` requirement, that will significantly
/// improve this algorithm's overall performance.
///
/// ~~~
/// // Computes a forward FFT of size 1201, using Bluestein's Algorithm
/// use rustfft::algorithm::BluesteinsAlgorithm;
/// use rustfft::{Fft, FftPlanner};
/// use rustfft::num_complex::Complex;
///
/// let mut buffer = vec![Complex{ re: 0.0f32, im: 0.0f32 }; 1201];
///
/// // We need to find an inner FFT whose size is greater than 1201*2 - 1.
/// // The size 2401 (7^4) satisfies this requirement, while also being relatively fast.
/// let mut planner = FftPlanner::new();
/// let inner_fft = planner.plan_fft_forward(2401);
///
/// let fft = BluesteinsAlgorithm::new(1201, inner_fft);
/// fft.process(&mut buffer);
/// ~~~
///
/// Bluesteins's Algorithm is relatively expensive compared to other FFT algorithms. Benchmarking shows that it is up to
/// an order of magnitude slower than similar composite sizes. In the example size above of 1201, benchmarking shows
/// that it takes 5x more time to compute than computing a FFT of size 1200 via a step of MixedRadix.
pub struct BluesteinsAlgorithm<T> {
inner_fft: Arc<dyn Fft<T>>,
inner_fft_multiplier: Box<[Complex<T>]>,
twiddles: Box<[Complex<T>]>,
len: usize,
direction: FftDirection,
}
impl<T: FftNum> BluesteinsAlgorithm<T> {
/// Creates a FFT instance which will process inputs/outputs of size `len`. `inner_fft.len()` must be >= `len * 2 - 1`
///
/// Note that this constructor is quite expensive to run; This algorithm must compute a FFT using `inner_fft` within the
/// constructor. This further underlines the fact that Bluesteins Algorithm is more expensive to run than other
/// FFT algorithms
///
/// # Panics
/// Panics if `inner_fft.len() < len * 2 - 1`.
pub fn new(len: usize, inner_fft: Arc<dyn Fft<T>>) -> Self {
let inner_fft_len = inner_fft.len();
assert!(len * 2 - 1 <= inner_fft_len, "Bluestein's algorithm requires inner_fft.len() >= self.len() * 2 - 1. Expected >= {}, got {}", len * 2 - 1, inner_fft_len);
// when computing FFTs, we're going to run our inner multiply pairise by some precomputed data, then run an inverse inner FFT. We need to precompute that inner data here
let inner_fft_scale = T::one() / T::from_usize(inner_fft_len).unwrap();
let direction = inner_fft.fft_direction();
// Compute twiddle factors that we'll run our inner FFT on
let mut inner_fft_input = vec![Complex::zero(); inner_fft_len];
twiddles::fill_bluesteins_twiddles(
&mut inner_fft_input[..len],
direction.opposite_direction(),
);
// Scale the computed twiddles and copy them to the end of the array
inner_fft_input[0] = inner_fft_input[0] * inner_fft_scale;
for i in 1..len {
let twiddle = inner_fft_input[i] * inner_fft_scale;
inner_fft_input[i] = twiddle;
inner_fft_input[inner_fft_len - i] = twiddle;
}
//Compute the inner fft
let mut inner_fft_scratch = vec![Complex::zero(); inner_fft.get_inplace_scratch_len()];
inner_fft.process_with_scratch(&mut inner_fft_input, &mut inner_fft_scratch);
// also compute some more mundane twiddle factors to start and end with
let mut twiddles = vec![Complex::zero(); len];
twiddles::fill_bluesteins_twiddles(&mut twiddles, direction);
Self {
inner_fft: inner_fft,
inner_fft_multiplier: inner_fft_input.into_boxed_slice(),
twiddles: twiddles.into_boxed_slice(),
len,
direction,
}
}
fn perform_fft_inplace(&self, input: &mut [Complex<T>], scratch: &mut [Complex<T>]) {
let (inner_input, inner_scratch) = scratch.split_at_mut(self.inner_fft_multiplier.len());
// Copy the buffer into our inner FFT input. the buffer will only fill part of the FFT input, so zero fill the rest
for ((buffer_entry, inner_entry), twiddle) in input
.iter()
.zip(inner_input.iter_mut())
.zip(self.twiddles.iter())
{
*inner_entry = *buffer_entry * *twiddle;
}
for inner in (&mut inner_input[input.len()..]).iter_mut() {
*inner = Complex::zero();
}
// run our inner forward FFT
self.inner_fft
.process_with_scratch(inner_input, inner_scratch);
// Multiply our inner FFT output by our precomputed data. Then, conjugate the result to set up for an inverse FFT
for (inner, multiplier) in inner_input.iter_mut().zip(self.inner_fft_multiplier.iter()) {
*inner = (*inner * *multiplier).conj();
}
// inverse FFT. we're computing a forward but we're massaging it into an inverse by conjugating the inputs and outputs
self.inner_fft
.process_with_scratch(inner_input, inner_scratch);
// copy our data back to the buffer, applying twiddle factors again as we go. Also conjugate inner_input to complete the inverse FFT
for ((buffer_entry, inner_entry), twiddle) in input
.iter_mut()
.zip(inner_input.iter())
.zip(self.twiddles.iter())
{
*buffer_entry = inner_entry.conj() * twiddle;
}
}
fn perform_fft_out_of_place(
&self,
input: &mut [Complex<T>],
output: &mut [Complex<T>],
scratch: &mut [Complex<T>],
) {
let (inner_input, inner_scratch) = scratch.split_at_mut(self.inner_fft_multiplier.len());
// Copy the buffer into our inner FFT input. the buffer will only fill part of the FFT input, so zero fill the rest
for ((buffer_entry, inner_entry), twiddle) in input
.iter()
.zip(inner_input.iter_mut())
.zip(self.twiddles.iter())
{
*inner_entry = *buffer_entry * *twiddle;
}
for inner in inner_input.iter_mut().skip(input.len()) {
*inner = Complex::zero();
}
// run our inner forward FFT
self.inner_fft
.process_with_scratch(inner_input, inner_scratch);
// Multiply our inner FFT output by our precomputed data. Then, conjugate the result to set up for an inverse FFT
for (inner, multiplier) in inner_input.iter_mut().zip(self.inner_fft_multiplier.iter()) {
*inner = (*inner * *multiplier).conj();
}
// inverse FFT. we're computing a forward but we're massaging it into an inverse by conjugating the inputs and outputs
self.inner_fft
.process_with_scratch(inner_input, inner_scratch);
// copy our data back to the buffer, applying twiddle factors again as we go. Also conjugate inner_input to complete the inverse FFT
for ((buffer_entry, inner_entry), twiddle) in output
.iter_mut()
.zip(inner_input.iter())
.zip(self.twiddles.iter())
{
*buffer_entry = inner_entry.conj() * twiddle;
}
}
}
boilerplate_fft!(
BluesteinsAlgorithm,
|this: &BluesteinsAlgorithm<_>| this.len, // FFT len
|this: &BluesteinsAlgorithm<_>| this.inner_fft_multiplier.len()
+ this.inner_fft.get_inplace_scratch_len(), // in-place scratch len
|this: &BluesteinsAlgorithm<_>| this.inner_fft_multiplier.len()
+ this.inner_fft.get_inplace_scratch_len() // out of place scratch len
);
#[cfg(test)]
mod unit_tests {
use super::*;
use crate::algorithm::Dft;
use crate::test_utils::check_fft_algorithm;
use std::sync::Arc;
#[test]
fn test_bluesteins_scalar() {
for &len in &[3, 5, 7, 11, 13] {
test_bluesteins_with_length(len, FftDirection::Forward);
test_bluesteins_with_length(len, FftDirection::Inverse);
}
}
fn test_bluesteins_with_length(len: usize, direction: FftDirection) {
let inner_fft = Arc::new(Dft::new(
(len * 2 - 1).checked_next_power_of_two().unwrap(),
direction,
));
let fft = BluesteinsAlgorithm::new(len, inner_fft);
check_fft_algorithm::<f32>(&fft, len, direction);
}
}