ring/
aead.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright 2015-2024 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Authenticated Encryption with Associated Data (AEAD).
//!
//! See [Authenticated encryption: relations among notions and analysis of the
//! generic composition paradigm][AEAD] for an introduction to the concept of
//! AEADs.
//!
//! [AEAD]: https://eprint.iacr.org/2000/025.pdf
//! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD

use crate::{
    cpu, error,
    polyfill::{u64_from_usize, usize_from_u64_saturated},
};

pub use self::{
    algorithm::{Algorithm, AES_128_GCM, AES_256_GCM, CHACHA20_POLY1305},
    less_safe_key::LessSafeKey,
    nonce::{Nonce, NONCE_LEN},
    opening_key::OpeningKey,
    sealing_key::SealingKey,
    unbound_key::UnboundKey,
};

/// A sequences of unique nonces.
///
/// A given `NonceSequence` must never return the same `Nonce` twice from
/// `advance()`.
///
/// A simple counter is a reasonable (but probably not ideal) `NonceSequence`.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the sequence.
pub trait NonceSequence {
    /// Returns the next nonce in the sequence.
    ///
    /// This may fail if "too many" nonces have been requested, where how many
    /// is too many is up to the implementation of `NonceSequence`. An
    /// implementation may that enforce a maximum number of records are
    /// sent/received under a key this way. Once `advance()` fails, it must
    /// fail for all subsequent calls.
    fn advance(&mut self) -> Result<Nonce, error::Unspecified>;
}

/// An AEAD key bound to a nonce sequence.
pub trait BoundKey<N: NonceSequence>: core::fmt::Debug {
    /// Constructs a new key from the given `UnboundKey` and `NonceSequence`.
    fn new(key: UnboundKey, nonce_sequence: N) -> Self;

    /// The key's AEAD algorithm.
    fn algorithm(&self) -> &'static Algorithm;
}

/// The additionally authenticated data (AAD) for an opening or sealing
/// operation. This data is authenticated but is **not** encrypted.
///
/// The type `A` could be a byte slice `&[u8]`, a byte array `[u8; N]`
/// for some constant `N`, `Vec<u8>`, etc.
#[derive(Clone, Copy)]
pub struct Aad<A>(A);

impl<A: AsRef<[u8]>> Aad<A> {
    /// Construct the `Aad` from the given bytes.
    #[inline]
    pub fn from(aad: A) -> Self {
        Self(aad)
    }
}

impl<A> AsRef<[u8]> for Aad<A>
where
    A: AsRef<[u8]>,
{
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl Aad<[u8; 0]> {
    /// Construct an empty `Aad`.
    pub fn empty() -> Self {
        Self::from([])
    }
}

impl<A> core::fmt::Debug for Aad<A>
where
    A: core::fmt::Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_tuple("Aad").field(&self.0).finish()
    }
}

impl<A> PartialEq for Aad<A>
where
    A: PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl<A> Eq for Aad<A> where A: Eq {}

#[allow(clippy::large_enum_variant, variant_size_differences)]
#[derive(Clone)]
enum KeyInner {
    AesGcm(aes_gcm::Key),
    ChaCha20Poly1305(chacha20_poly1305::Key),
}

const fn max_input_len(block_len: usize, overhead_blocks_per_nonce: usize) -> usize {
    // Each of our AEADs use a 32-bit block counter so the maximum is the
    // largest input that will not overflow the counter.
    usize_from_u64_saturated(
        ((1u64 << 32) - u64_from_usize(overhead_blocks_per_nonce)) * u64_from_usize(block_len),
    )
}

/// A possibly valid authentication tag.
#[must_use]
#[repr(C)]
#[derive(Clone, Copy)]
pub struct Tag([u8; TAG_LEN]);

impl AsRef<[u8]> for Tag {
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl TryFrom<&[u8]> for Tag {
    type Error = error::Unspecified;

    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        let raw_tag: [u8; TAG_LEN] = value.try_into().map_err(|_| error::Unspecified)?;
        Ok(Self::from(raw_tag))
    }
}

impl From<[u8; TAG_LEN]> for Tag {
    #[inline]
    fn from(value: [u8; TAG_LEN]) -> Self {
        Self(value)
    }
}

const MAX_KEY_LEN: usize = 32;

// All the AEADs we support use 128-bit tags.
const TAG_LEN: usize = 16;

/// The maximum length of a tag for the algorithms in this module.
pub const MAX_TAG_LEN: usize = TAG_LEN;

mod aes;
mod aes_gcm;
mod algorithm;
mod chacha;
mod chacha20_poly1305;
pub mod chacha20_poly1305_openssh;
mod gcm;
mod less_safe_key;
mod nonce;
mod opening_key;
mod overlapping;
mod poly1305;
pub mod quic;
mod sealing_key;
mod shift;
mod unbound_key;