ratatui/widgets/canvas.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
//! A [`Canvas`] and a collection of [`Shape`]s.
//!
//! The [`Canvas`] is a blank space on which you can draw anything manually or use one of the
//! predefined [`Shape`]s.
//!
//! The available shapes are:
//!
//! - [`Circle`]: A basic circle
//! - [`Line`]: A line between two points
//! - [`Map`]: A world map
//! - [`Points`]: A scatter of points
//! - [`Rectangle`]: A basic rectangle
//!
//! You can also implement your own custom [`Shape`]s.
mod circle;
mod line;
mod map;
mod points;
mod rectangle;
mod world;
use std::{fmt, iter::zip};
use itertools::Itertools;
pub use self::{
circle::Circle,
line::Line,
map::{Map, MapResolution},
points::Points,
rectangle::Rectangle,
};
use crate::{
buffer::Buffer,
layout::Rect,
style::{Color, Style},
symbols::{self, Marker},
text::Line as TextLine,
widgets::{block::BlockExt, Block, Widget, WidgetRef},
};
/// Something that can be drawn on a [`Canvas`].
///
/// You may implement your own canvas custom widgets by implementing this trait.
pub trait Shape {
/// Draws this [`Shape`] using the given [`Painter`].
///
/// This is the only method required to implement a custom widget that can be drawn on a
/// [`Canvas`].
fn draw(&self, painter: &mut Painter);
}
/// Label to draw some text on the canvas
#[derive(Debug, Default, Clone, PartialEq)]
pub struct Label<'a> {
x: f64,
y: f64,
line: TextLine<'a>,
}
/// A single layer of the canvas.
///
/// This allows the canvas to be drawn in multiple layers. This is useful if you want to draw
/// multiple shapes on the canvas in specific order.
#[derive(Debug)]
struct Layer {
// A string of characters representing the grid. This will be wrapped to the width of the grid
// when rendering
string: String,
// Colors for foreground and background of each cell
colors: Vec<(Color, Color)>,
}
/// A grid of cells that can be painted on.
///
/// The grid represents a particular screen region measured in rows and columns. The underlying
/// resolution of the grid might exceed the number of rows and columns. For example, a grid of
/// Braille patterns will have a resolution of 2x4 dots per cell. This means that a grid of 10x10
/// cells will have a resolution of 20x40 dots.
trait Grid: fmt::Debug {
/// Get the resolution of the grid in number of dots.
///
/// This doesn't have to be the same as the number of rows and columns of the grid. For example,
/// a grid of Braille patterns will have a resolution of 2x4 dots per cell. This means that a
/// grid of 10x10 cells will have a resolution of 20x40 dots.
fn resolution(&self) -> (f64, f64);
/// Paint a point of the grid.
///
/// The point is expressed in number of dots starting at the origin of the grid in the top left
/// corner. Note that this is not the same as the `(x, y)` coordinates of the canvas.
fn paint(&mut self, x: usize, y: usize, color: Color);
/// Save the current state of the [`Grid`] as a layer to be rendered
fn save(&self) -> Layer;
/// Reset the grid to its initial state
fn reset(&mut self);
}
/// The `BrailleGrid` is a grid made up of cells each containing a Braille pattern.
///
/// This makes it possible to draw shapes with a resolution of 2x4 dots per cell. This is useful
/// when you want to draw shapes with a high resolution. Font support for Braille patterns is
/// required to see the dots. If your terminal or font does not support this unicode block, you
/// will see unicode replacement characters (�) instead of braille dots.
///
/// This grid type only supports a single foreground color for each 2x4 dots cell. There is no way
/// to set the individual color of each dot in the braille pattern.
#[derive(Debug)]
struct BrailleGrid {
/// Width of the grid in number of terminal columns
width: u16,
/// Height of the grid in number of terminal rows
height: u16,
/// Represents the unicode braille patterns. Will take a value between `0x2800` and `0x28FF`
/// this is converted to an utf16 string when converting to a layer. See
/// <https://en.wikipedia.org/wiki/Braille_Patterns> for more info.
utf16_code_points: Vec<u16>,
/// The color of each cell only supports foreground colors for now as there's no way to
/// individually set the background color of each dot in the braille pattern.
colors: Vec<Color>,
}
impl BrailleGrid {
/// Create a new `BrailleGrid` with the given width and height measured in terminal columns and
/// rows respectively.
fn new(width: u16, height: u16) -> Self {
let length = usize::from(width * height);
Self {
width,
height,
utf16_code_points: vec![symbols::braille::BLANK; length],
colors: vec![Color::Reset; length],
}
}
}
impl Grid for BrailleGrid {
fn resolution(&self) -> (f64, f64) {
(f64::from(self.width) * 2.0, f64::from(self.height) * 4.0)
}
fn save(&self) -> Layer {
let string = String::from_utf16(&self.utf16_code_points).unwrap();
// the background color is always reset for braille patterns
let colors = self.colors.iter().map(|c| (*c, Color::Reset)).collect();
Layer { string, colors }
}
fn reset(&mut self) {
self.utf16_code_points.fill(symbols::braille::BLANK);
self.colors.fill(Color::Reset);
}
fn paint(&mut self, x: usize, y: usize, color: Color) {
let index = y / 4 * self.width as usize + x / 2;
// using get_mut here because we are indexing the vector with usize values
// and we want to make sure we don't panic if the index is out of bounds
if let Some(c) = self.utf16_code_points.get_mut(index) {
*c |= symbols::braille::DOTS[y % 4][x % 2];
}
if let Some(c) = self.colors.get_mut(index) {
*c = color;
}
}
}
/// The `CharGrid` is a grid made up of cells each containing a single character.
///
/// This makes it possible to draw shapes with a resolution of 1x1 dots per cell. This is useful
/// when you want to draw shapes with a low resolution.
#[derive(Debug)]
struct CharGrid {
/// Width of the grid in number of terminal columns
width: u16,
/// Height of the grid in number of terminal rows
height: u16,
/// Represents a single character for each cell
cells: Vec<char>,
/// The color of each cell
colors: Vec<Color>,
/// The character to use for every cell - e.g. a block, dot, etc.
cell_char: char,
}
impl CharGrid {
/// Create a new `CharGrid` with the given width and height measured in terminal columns and
/// rows respectively.
fn new(width: u16, height: u16, cell_char: char) -> Self {
let length = usize::from(width * height);
Self {
width,
height,
cells: vec![' '; length],
colors: vec![Color::Reset; length],
cell_char,
}
}
}
impl Grid for CharGrid {
fn resolution(&self) -> (f64, f64) {
(f64::from(self.width), f64::from(self.height))
}
fn save(&self) -> Layer {
Layer {
string: self.cells.iter().collect(),
colors: self.colors.iter().map(|c| (*c, Color::Reset)).collect(),
}
}
fn reset(&mut self) {
self.cells.fill(' ');
self.colors.fill(Color::Reset);
}
fn paint(&mut self, x: usize, y: usize, color: Color) {
let index = y * self.width as usize + x;
// using get_mut here because we are indexing the vector with usize values
// and we want to make sure we don't panic if the index is out of bounds
if let Some(c) = self.cells.get_mut(index) {
*c = self.cell_char;
}
if let Some(c) = self.colors.get_mut(index) {
*c = color;
}
}
}
/// The `HalfBlockGrid` is a grid made up of cells each containing a half block character.
///
/// In terminals, each character is usually twice as tall as it is wide. Unicode has a couple of
/// vertical half block characters, the upper half block '▀' and lower half block '▄' which take up
/// half the height of a normal character but the full width. Together with an empty space ' ' and a
/// full block '█', we can effectively double the resolution of a single cell. In addition, because
/// each character can have a foreground and background color, we can control the color of the upper
/// and lower half of each cell. This allows us to draw shapes with a resolution of 1x2 "pixels" per
/// cell.
///
/// This allows for more flexibility than the `BrailleGrid` which only supports a single
/// foreground color for each 2x4 dots cell, and the `CharGrid` which only supports a single
/// character for each cell.
#[derive(Debug)]
struct HalfBlockGrid {
/// Width of the grid in number of terminal columns
width: u16,
/// Height of the grid in number of terminal rows
height: u16,
/// Represents a single color for each "pixel" arranged in column, row order
pixels: Vec<Vec<Color>>,
}
impl HalfBlockGrid {
/// Create a new `HalfBlockGrid` with the given width and height measured in terminal columns
/// and rows respectively.
fn new(width: u16, height: u16) -> Self {
Self {
width,
height,
pixels: vec![vec![Color::Reset; width as usize]; height as usize * 2],
}
}
}
impl Grid for HalfBlockGrid {
fn resolution(&self) -> (f64, f64) {
(f64::from(self.width), f64::from(self.height) * 2.0)
}
fn save(&self) -> Layer {
// Given that we store the pixels in a grid, and that we want to use 2 pixels arranged
// vertically to form a single terminal cell, which can be either empty, upper half block,
// lower half block or full block, we need examine the pixels in vertical pairs to decide
// what character to print in each cell. So these are the 4 states we use to represent each
// cell:
//
// 1. upper: reset, lower: reset => ' ' fg: reset / bg: reset
// 2. upper: reset, lower: color => '▄' fg: lower color / bg: reset
// 3. upper: color, lower: reset => '▀' fg: upper color / bg: reset
// 4. upper: color, lower: color => '▀' fg: upper color / bg: lower color
//
// Note that because the foreground reset color (i.e. default foreground color) is usually
// not the same as the background reset color (i.e. default background color), we need to
// swap around the colors for that state (2 reset/color).
//
// When the upper and lower colors are the same, we could continue to use an upper half
// block, but we choose to use a full block instead. This allows us to write unit tests that
// treat the cell as a single character instead of two half block characters.
// first we join each adjacent row together to get an iterator that contains vertical pairs
// of pixels, with the lower row being the first element in the pair
let vertical_color_pairs = self
.pixels
.iter()
.tuples()
.flat_map(|(upper_row, lower_row)| zip(upper_row, lower_row));
// then we work out what character to print for each pair of pixels
let string = vertical_color_pairs
.clone()
.map(|(upper, lower)| match (upper, lower) {
(Color::Reset, Color::Reset) => ' ',
(Color::Reset, _) => symbols::half_block::LOWER,
(_, Color::Reset) => symbols::half_block::UPPER,
(&lower, &upper) => {
if lower == upper {
symbols::half_block::FULL
} else {
symbols::half_block::UPPER
}
}
})
.collect();
// then we convert these each vertical pair of pixels into a foreground and background color
let colors = vertical_color_pairs
.map(|(upper, lower)| {
let (fg, bg) = match (upper, lower) {
(Color::Reset, Color::Reset) => (Color::Reset, Color::Reset),
(Color::Reset, &lower) => (lower, Color::Reset),
(&upper, Color::Reset) => (upper, Color::Reset),
(&upper, &lower) => (upper, lower),
};
(fg, bg)
})
.collect();
Layer { string, colors }
}
fn reset(&mut self) {
self.pixels.fill(vec![Color::Reset; self.width as usize]);
}
fn paint(&mut self, x: usize, y: usize, color: Color) {
self.pixels[y][x] = color;
}
}
/// Painter is an abstraction over the [`Context`] that allows to draw shapes on the grid.
///
/// It is used by the [`Shape`] trait to draw shapes on the grid. It can be useful to think of this
/// as similar to the [`Buffer`] struct that is used to draw widgets on the terminal.
#[derive(Debug)]
pub struct Painter<'a, 'b> {
context: &'a mut Context<'b>,
resolution: (f64, f64),
}
impl<'a, 'b> Painter<'a, 'b> {
/// Convert the `(x, y)` coordinates to location of a point on the grid
///
/// `(x, y)` coordinates are expressed in the coordinate system of the canvas. The origin is in
/// the lower left corner of the canvas (unlike most other coordinates in `Ratatui` where the
/// origin is the upper left corner). The `x` and `y` bounds of the canvas define the specific
/// area of some coordinate system that will be drawn on the canvas. The resolution of the grid
/// is used to convert the `(x, y)` coordinates to the location of a point on the grid.
///
/// The grid coordinates are expressed in the coordinate system of the grid. The origin is in
/// the top left corner of the grid. The x and y bounds of the grid are always `[0, width - 1]`
/// and `[0, height - 1]` respectively. The resolution of the grid is used to convert the
/// `(x, y)` coordinates to the location of a point on the grid.
///
/// # Examples
///
/// ```
/// use ratatui::{
/// symbols,
/// widgets::canvas::{Context, Painter},
/// };
///
/// let mut ctx = Context::new(2, 2, [1.0, 2.0], [0.0, 2.0], symbols::Marker::Braille);
/// let mut painter = Painter::from(&mut ctx);
///
/// let point = painter.get_point(1.0, 0.0);
/// assert_eq!(point, Some((0, 7)));
///
/// let point = painter.get_point(1.5, 1.0);
/// assert_eq!(point, Some((1, 3)));
///
/// let point = painter.get_point(0.0, 0.0);
/// assert_eq!(point, None);
///
/// let point = painter.get_point(2.0, 2.0);
/// assert_eq!(point, Some((3, 0)));
///
/// let point = painter.get_point(1.0, 2.0);
/// assert_eq!(point, Some((0, 0)));
/// ```
pub fn get_point(&self, x: f64, y: f64) -> Option<(usize, usize)> {
let left = self.context.x_bounds[0];
let right = self.context.x_bounds[1];
let top = self.context.y_bounds[1];
let bottom = self.context.y_bounds[0];
if x < left || x > right || y < bottom || y > top {
return None;
}
let width = (self.context.x_bounds[1] - self.context.x_bounds[0]).abs();
let height = (self.context.y_bounds[1] - self.context.y_bounds[0]).abs();
if width == 0.0 || height == 0.0 {
return None;
}
let x = ((x - left) * (self.resolution.0 - 1.0) / width) as usize;
let y = ((top - y) * (self.resolution.1 - 1.0) / height) as usize;
Some((x, y))
}
/// Paint a point of the grid
///
/// # Example
///
/// ```
/// use ratatui::{
/// style::Color,
/// symbols,
/// widgets::canvas::{Context, Painter},
/// };
///
/// let mut ctx = Context::new(1, 1, [0.0, 2.0], [0.0, 2.0], symbols::Marker::Braille);
/// let mut painter = Painter::from(&mut ctx);
/// painter.paint(1, 3, Color::Red);
/// ```
pub fn paint(&mut self, x: usize, y: usize, color: Color) {
self.context.grid.paint(x, y, color);
}
}
impl<'a, 'b> From<&'a mut Context<'b>> for Painter<'a, 'b> {
fn from(context: &'a mut Context<'b>) -> Self {
let resolution = context.grid.resolution();
Self {
context,
resolution,
}
}
}
/// Holds the state of the [`Canvas`] when painting to it.
///
/// This is used by the [`Canvas`] widget to draw shapes on the grid. It can be useful to think of
/// this as similar to the [`Frame`] struct that is used to draw widgets on the terminal.
///
/// [`Frame`]: crate::Frame
#[derive(Debug)]
pub struct Context<'a> {
x_bounds: [f64; 2],
y_bounds: [f64; 2],
grid: Box<dyn Grid>,
dirty: bool,
layers: Vec<Layer>,
labels: Vec<Label<'a>>,
}
impl<'a> Context<'a> {
/// Create a new Context with the given width and height measured in terminal columns and rows
/// respectively. The `x` and `y` bounds define the specific area of some coordinate system that
/// will be drawn on the canvas. The marker defines the type of points used to draw the shapes.
///
/// Applications should not use this directly but rather use the [`Canvas`] widget. This will be
/// created by the [`Canvas::paint`] method and passed to the closure that is used to draw on
/// the canvas.
///
/// The `x` and `y` bounds should be specified as left/right and bottom/top respectively. For
/// example, if you want to draw a map of the world, you might want to use the following bounds:
///
/// ```
/// use ratatui::{symbols, widgets::canvas::Context};
///
/// let ctx = Context::new(
/// 100,
/// 100,
/// [-180.0, 180.0],
/// [-90.0, 90.0],
/// symbols::Marker::Braille,
/// );
/// ```
pub fn new(
width: u16,
height: u16,
x_bounds: [f64; 2],
y_bounds: [f64; 2],
marker: Marker,
) -> Self {
let dot = symbols::DOT.chars().next().unwrap();
let block = symbols::block::FULL.chars().next().unwrap();
let bar = symbols::bar::HALF.chars().next().unwrap();
let grid: Box<dyn Grid> = match marker {
Marker::Dot => Box::new(CharGrid::new(width, height, dot)),
Marker::Block => Box::new(CharGrid::new(width, height, block)),
Marker::Bar => Box::new(CharGrid::new(width, height, bar)),
Marker::Braille => Box::new(BrailleGrid::new(width, height)),
Marker::HalfBlock => Box::new(HalfBlockGrid::new(width, height)),
};
Self {
x_bounds,
y_bounds,
grid,
dirty: false,
layers: Vec::new(),
labels: Vec::new(),
}
}
/// Draw the given [`Shape`] in this context
pub fn draw<S>(&mut self, shape: &S)
where
S: Shape,
{
self.dirty = true;
let mut painter = Painter::from(self);
shape.draw(&mut painter);
}
/// Save the existing state of the grid as a layer.
///
/// Save the existing state as a layer to be rendered and reset the grid to its initial
/// state for the next layer.
///
/// This allows the canvas to be drawn in multiple layers. This is useful if you want to
/// draw multiple shapes on the [`Canvas`] in specific order.
pub fn layer(&mut self) {
self.layers.push(self.grid.save());
self.grid.reset();
self.dirty = false;
}
/// Print a [`Text`] on the [`Canvas`] at the given position.
///
/// Note that the text is always printed on top of the canvas and is **not** affected by the
/// layers.
///
/// [`Text`]: crate::text::Text
pub fn print<T>(&mut self, x: f64, y: f64, line: T)
where
T: Into<TextLine<'a>>,
{
self.labels.push(Label {
x,
y,
line: line.into(),
});
}
/// Save the last layer if necessary
fn finish(&mut self) {
if self.dirty {
self.layer();
}
}
}
/// The Canvas widget provides a means to draw shapes (Lines, Rectangles, Circles, etc.) on a grid.
///
/// By default the grid is made of Braille patterns but you may change the marker to use a different
/// set of symbols. If your terminal or font does not support this unicode block, you will see
/// unicode replacement characters (�) instead of braille dots. The Braille patterns provide a more
/// fine grained result (2x4 dots) but you might want to use a simple dot, block, or bar instead by
/// calling the [`marker`] method if your target environment does not support those symbols,
///
/// See [Unicode Braille Patterns](https://en.wikipedia.org/wiki/Braille_Patterns) for more info.
///
/// The `HalfBlock` marker is useful when you want to draw shapes with a higher resolution than a
/// `CharGrid` but lower than a `BrailleGrid`. This grid type supports a foreground and background
/// color for each terminal cell. This allows for more flexibility than the `BrailleGrid` which only
/// supports a single foreground color for each 2x4 dots cell.
///
/// The Canvas widget is used by calling the [`Canvas::paint`] method and passing a closure that
/// will be used to draw on the canvas. The closure will be passed a [`Context`] object that can be
/// used to draw shapes on the canvas.
///
/// The [`Context`] object provides a [`Context::draw`] method that can be used to draw shapes on
/// the canvas. The [`Context::layer`] method can be used to save the current state of the canvas
/// and start a new layer. This is useful if you want to draw multiple shapes on the canvas in
/// specific order. The [`Context`] object also provides a [`Context::print`] method that can be
/// used to print text on the canvas. Note that the text is always printed on top of the canvas and
/// is not affected by the layers.
///
/// # Examples
///
/// ```
/// use ratatui::{
/// style::Color,
/// widgets::{
/// canvas::{Canvas, Line, Map, MapResolution, Rectangle},
/// Block,
/// },
/// };
///
/// Canvas::default()
/// .block(Block::bordered().title("Canvas"))
/// .x_bounds([-180.0, 180.0])
/// .y_bounds([-90.0, 90.0])
/// .paint(|ctx| {
/// ctx.draw(&Map {
/// resolution: MapResolution::High,
/// color: Color::White,
/// });
/// ctx.layer();
/// ctx.draw(&Line {
/// x1: 0.0,
/// y1: 10.0,
/// x2: 10.0,
/// y2: 10.0,
/// color: Color::White,
/// });
/// ctx.draw(&Rectangle {
/// x: 10.0,
/// y: 20.0,
/// width: 10.0,
/// height: 10.0,
/// color: Color::Red,
/// });
/// });
/// ```
///
/// [`marker`]: #method.marker
#[derive(Debug, Clone, PartialEq)]
pub struct Canvas<'a, F>
where
F: Fn(&mut Context),
{
block: Option<Block<'a>>,
x_bounds: [f64; 2],
y_bounds: [f64; 2],
paint_func: Option<F>,
background_color: Color,
marker: Marker,
}
impl<'a, F> Default for Canvas<'a, F>
where
F: Fn(&mut Context),
{
fn default() -> Self {
Self {
block: None,
x_bounds: [0.0, 0.0],
y_bounds: [0.0, 0.0],
paint_func: None,
background_color: Color::Reset,
marker: Marker::Braille,
}
}
}
impl<'a, F> Canvas<'a, F>
where
F: Fn(&mut Context),
{
/// Wraps the canvas with a custom [`Block`] widget.
///
/// This is a fluent setter method which must be chained or used as it consumes self
#[must_use = "method moves the value of self and returns the modified value"]
pub fn block(mut self, block: Block<'a>) -> Self {
self.block = Some(block);
self
}
/// Define the viewport of the canvas.
///
/// If you were to "zoom" to a certain part of the world you may want to choose different
/// bounds.
///
/// This is a fluent setter method which must be chained or used as it consumes self
#[must_use = "method moves the value of self and returns the modified value"]
pub const fn x_bounds(mut self, bounds: [f64; 2]) -> Self {
self.x_bounds = bounds;
self
}
/// Define the viewport of the canvas.
///
/// If you were to "zoom" to a certain part of the world you may want to choose different
/// bounds.
///
/// This is a fluent setter method which must be chained or used as it consumes self
#[must_use = "method moves the value of self and returns the modified value"]
pub const fn y_bounds(mut self, bounds: [f64; 2]) -> Self {
self.y_bounds = bounds;
self
}
/// Store the closure that will be used to draw to the [`Canvas`]
///
/// This is a fluent setter method which must be chained or used as it consumes self
#[must_use = "method moves the value of self and returns the modified value"]
pub fn paint(mut self, f: F) -> Self {
self.paint_func = Some(f);
self
}
/// Change the background [`Color`] of the entire canvas
///
/// This is a fluent setter method which must be chained or used as it consumes self
#[must_use = "method moves the value of self and returns the modified value"]
pub const fn background_color(mut self, color: Color) -> Self {
self.background_color = color;
self
}
/// Change the type of points used to draw the shapes.
///
/// By default the [`Braille`] patterns are used as they provide a more fine grained result,
/// but you might want to use the simple [`Dot`] or [`Block`] instead if the targeted terminal
/// does not support those symbols.
///
/// The [`HalfBlock`] marker is useful when you want to draw shapes with a higher resolution
/// than with a grid of characters (e.g. with [`Block`] or [`Dot`]) but lower than with
/// [`Braille`]. This grid type supports a foreground and background color for each terminal
/// cell. This allows for more flexibility than the `BrailleGrid` which only supports a single
/// foreground color for each 2x4 dots cell.
///
/// [`Braille`]: crate::symbols::Marker::Braille
/// [`HalfBlock`]: crate::symbols::Marker::HalfBlock
/// [`Dot`]: crate::symbols::Marker::Dot
/// [`Block`]: crate::symbols::Marker::Block
///
/// # Examples
///
/// ```
/// use ratatui::{symbols, widgets::canvas::Canvas};
///
/// Canvas::default()
/// .marker(symbols::Marker::Braille)
/// .paint(|ctx| {});
///
/// Canvas::default()
/// .marker(symbols::Marker::HalfBlock)
/// .paint(|ctx| {});
///
/// Canvas::default()
/// .marker(symbols::Marker::Dot)
/// .paint(|ctx| {});
///
/// Canvas::default()
/// .marker(symbols::Marker::Block)
/// .paint(|ctx| {});
/// ```
#[must_use = "method moves the value of self and returns the modified value"]
pub const fn marker(mut self, marker: Marker) -> Self {
self.marker = marker;
self
}
}
impl<F> Widget for Canvas<'_, F>
where
F: Fn(&mut Context),
{
fn render(self, area: Rect, buf: &mut Buffer) {
self.render_ref(area, buf);
}
}
impl<F> WidgetRef for Canvas<'_, F>
where
F: Fn(&mut Context),
{
fn render_ref(&self, area: Rect, buf: &mut Buffer) {
self.block.render_ref(area, buf);
let canvas_area = self.block.inner_if_some(area);
if canvas_area.is_empty() {
return;
}
buf.set_style(canvas_area, Style::default().bg(self.background_color));
let width = canvas_area.width as usize;
let Some(ref painter) = self.paint_func else {
return;
};
// Create a blank context that match the size of the canvas
let mut ctx = Context::new(
canvas_area.width,
canvas_area.height,
self.x_bounds,
self.y_bounds,
self.marker,
);
// Paint to this context
painter(&mut ctx);
ctx.finish();
// Retrieve painted points for each layer
for layer in ctx.layers {
for (index, (ch, colors)) in layer.string.chars().zip(layer.colors).enumerate() {
if ch != ' ' && ch != '\u{2800}' {
let (x, y) = (
(index % width) as u16 + canvas_area.left(),
(index / width) as u16 + canvas_area.top(),
);
let cell = buf[(x, y)].set_char(ch);
if colors.0 != Color::Reset {
cell.set_fg(colors.0);
}
if colors.1 != Color::Reset {
cell.set_bg(colors.1);
}
}
}
}
// Finally draw the labels
let left = self.x_bounds[0];
let right = self.x_bounds[1];
let top = self.y_bounds[1];
let bottom = self.y_bounds[0];
let width = (self.x_bounds[1] - self.x_bounds[0]).abs();
let height = (self.y_bounds[1] - self.y_bounds[0]).abs();
let resolution = {
let width = f64::from(canvas_area.width - 1);
let height = f64::from(canvas_area.height - 1);
(width, height)
};
for label in ctx
.labels
.iter()
.filter(|l| l.x >= left && l.x <= right && l.y <= top && l.y >= bottom)
{
let x = ((label.x - left) * resolution.0 / width) as u16 + canvas_area.left();
let y = ((top - label.y) * resolution.1 / height) as u16 + canvas_area.top();
buf.set_line(x, y, &label.line, canvas_area.right() - x);
}
}
}
#[cfg(test)]
mod tests {
use indoc::indoc;
use super::*;
use crate::buffer::Cell;
// helper to test the canvas checks that drawing a vertical and horizontal line
// results in the expected output
fn test_marker(marker: Marker, expected: &str) {
let area = Rect::new(0, 0, 5, 5);
let mut buf = Buffer::filled(area, Cell::new("x"));
let horizontal_line = Line {
x1: 0.0,
y1: 0.0,
x2: 10.0,
y2: 0.0,
color: Color::Reset,
};
let vertical_line = Line {
x1: 0.0,
y1: 0.0,
x2: 0.0,
y2: 10.0,
color: Color::Reset,
};
Canvas::default()
.marker(marker)
.paint(|ctx| {
ctx.draw(&vertical_line);
ctx.draw(&horizontal_line);
})
.x_bounds([0.0, 10.0])
.y_bounds([0.0, 10.0])
.render(area, &mut buf);
assert_eq!(buf, Buffer::with_lines(expected.lines()));
}
#[test]
fn test_bar_marker() {
test_marker(
Marker::Bar,
indoc!(
"
▄xxxx
▄xxxx
▄xxxx
▄xxxx
▄▄▄▄▄"
),
);
}
#[test]
fn test_block_marker() {
test_marker(
Marker::Block,
indoc!(
"
█xxxx
█xxxx
█xxxx
█xxxx
█████"
),
);
}
#[test]
fn test_braille_marker() {
test_marker(
Marker::Braille,
indoc!(
"
⡇xxxx
⡇xxxx
⡇xxxx
⡇xxxx
⣇⣀⣀⣀⣀"
),
);
}
#[test]
fn test_dot_marker() {
test_marker(
Marker::Dot,
indoc!(
"
•xxxx
•xxxx
•xxxx
•xxxx
•••••"
),
);
}
}