primal_check/
is_prime.rs

1fn mod_mul_(a: u64, b: u64, m: u64) -> u64 {
2    (u128::from(a) * u128::from(b) % u128::from(m)) as u64
3}
4
5fn mod_mul(a: u64, b: u64, m: u64) -> u64 {
6    match a.checked_mul(b) {
7        Some(r) => if r >= m { r % m } else { r },
8        None => mod_mul_(a, b, m),
9    }
10}
11
12fn mod_sqr(a: u64, m: u64) -> u64 {
13    if a < (1 << 32) {
14        let r = a * a;
15        if r >= m {
16            r % m
17        } else {
18            r
19        }
20    } else {
21        mod_mul_(a, a, m)
22    }
23}
24
25fn mod_exp(mut x: u64, mut d: u64, n: u64) -> u64 {
26    let mut ret: u64 = 1;
27    while d != 0 {
28        if d % 2 == 1 {
29            ret = mod_mul(ret, x, n)
30        }
31        d /= 2;
32        x = mod_sqr(x, n);
33    }
34    ret
35}
36
37/// Test if `n` is prime, using the deterministic version of the
38/// Miller-Rabin test.
39///
40/// Doing a lot of primality tests with numbers strictly below some
41/// upper bound will be faster using the `is_prime` method of a
42/// `Sieve` instance.
43///
44/// # Examples
45///
46/// ```rust
47/// assert_eq!(primal::is_prime(1), false);
48/// assert_eq!(primal::is_prime(2), true);
49/// assert_eq!(primal::is_prime(3), true);
50/// assert_eq!(primal::is_prime(4), false);
51/// assert_eq!(primal::is_prime(5), true);
52///
53/// assert_eq!(primal::is_prime(22_801_763_487), false);
54/// assert_eq!(primal::is_prime(22_801_763_489), true);
55/// assert_eq!(primal::is_prime(22_801_763_491), false);
56/// ```
57pub fn miller_rabin(n: u64) -> bool {
58    const HINT: &[u64] = &[2];
59
60    // we have a strict upper bound, so we can just use the witness
61    // table of Pomerance, Selfridge & Wagstaff and Jeaschke to be as
62    // efficient as possible, without having to fall back to
63    // randomness. Additional limits from Feitsma and Galway complete
64    // the entire range of `u64`. See also:
65    // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Testing_against_small_sets_of_bases
66    const WITNESSES: &[(u64, &[u64])] = &[
67        (2_046, HINT),
68        (1_373_652, &[2, 3]),
69        (9_080_190, &[31, 73]),
70        (25_326_000, &[2, 3, 5]),
71        (4_759_123_140, &[2, 7, 61]),
72        (1_112_004_669_632, &[2, 13, 23, 1662803]),
73        (2_152_302_898_746, &[2, 3, 5, 7, 11]),
74        (3_474_749_660_382, &[2, 3, 5, 7, 11, 13]),
75        (341_550_071_728_320, &[2, 3, 5, 7, 11, 13, 17]),
76        (3_825_123_056_546_413_050, &[2, 3, 5, 7, 11, 13, 17, 19, 23]),
77        (std::u64::MAX, &[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]),
78    ];
79
80    if n % 2 == 0 { return n == 2 }
81    if n == 1 { return false }
82
83    let mut d = n - 1;
84    let mut s = 0;
85    while d % 2 == 0 { d /= 2; s += 1 }
86
87    let witnesses =
88        WITNESSES.iter().find(|&&(hi, _)| hi >= n)
89            .map(|&(_, wtnss)| wtnss).unwrap();
90    'next_witness: for &a in witnesses.iter() {
91        let mut power = mod_exp(a, d, n);
92        assert!(power < n);
93        if power == 1 || power == n - 1 { continue 'next_witness }
94
95        for _r in 0..s {
96            power = mod_sqr(power, n);
97            assert!(power < n);
98            if power == 1 { return false }
99            if power == n - 1 {
100                continue 'next_witness
101            }
102        }
103        return false
104    }
105
106    true
107}
108
109#[cfg(test)]
110mod tests {
111    use primal::Sieve;
112
113    #[test]
114    fn mod_mul() {
115        assert_eq!(super::mod_mul(1 << 63, 1 << 32, 3), 2);
116        assert_eq!(super::mod_mul(1 << 31, 1 << 31, (1 << 32) - 7), 3221225479);
117        assert_eq!(super::mod_mul(1 << 32, 1 << 32, (1 << 32) - 7), 49);
118        assert_eq!(super::mod_mul(1 << 32, 1 << 32, (1 << 32) + 7), 49);
119        assert_eq!(super::mod_mul(1 << 63, 1 << 32, (1 << 32) + 7), 2_147_483_480);
120        assert_eq!(super::mod_mul(1 << 63, 1 << 32, (1 << 63) + 7), 9_223_372_006_790_004_743);
121        assert_eq!(super::mod_mul(1 << 32, 1 << 32, !0), 1);
122    }
123
124    #[test]
125    fn miller_rabin() {
126        const LIMIT: usize = 1_000_000;
127        let sieve = Sieve::new(LIMIT);
128        for x in 0..LIMIT {
129            let s = sieve.is_prime(x);
130            let mr = super::miller_rabin(x as u64);
131
132            assert!(s == mr, "miller_rabin {} mismatches sieve {} for {}",
133                    mr, s, x)
134        }
135    }
136    #[test]
137    fn miller_rabin_large() {
138        let tests = &[
139            (4_294_967_311, true),
140            (4_294_967_291, true),
141            (4_294_967_291 * 4_294_967_291, false),
142            (!0, false),
143            ];
144        for &(n, is_prime) in tests {
145            assert!(super::miller_rabin(n) == is_prime,
146                    "mismatch for {} (should be {})", n, is_prime);
147        }
148    }
149
150    #[test]
151    fn oeis_a014233() {
152        // https://oeis.org/A014233
153        const A014233: [u64; 9] = [
154            2047,
155            1373653,
156            25326001,
157            3215031751,
158            2152302898747,
159            3474749660383,
160            341550071728321,
161            341550071728321,
162            3825123056546413051,
163            // 3825123056546413051,
164            // 3825123056546413051,
165            // 318665857834031151167461,
166            // 3317044064679887385961981,
167        ];
168        for &n in &A014233 {
169            assert!(!super::miller_rabin(n), "{} is composite!", n);
170        }
171    }
172}