ndhistogram/value/mean.rs
1use std::{
2 marker::PhantomData,
3 ops::{AddAssign, Div, Mul},
4};
5
6use num_traits::{abs, Float, NumOps, One, Signed};
7
8use crate::FillWith;
9
10/// This ndhistogram bin value computes the mean of the data samples provided when
11/// filling.
12///
13/// Mean has 3 type parameters:
14/// - the type that is being averaged,
15/// - the type of the output when calculating the mean and its uncertainty,
16/// - the type that counts the number of fills.
17///
18/// This allows, for example, integers to be used when filling or counting,
19/// but a floating point type to compute the mean.
20/// In most cases, you will only need to specify the first type as
21/// sensible defaults are set for the second two type parameters.
22///
23///
24/// # Example
25/// ```rust
26/// use ndhistogram::{ndhistogram, Histogram, axis::Uniform, value::Mean};
27///
28/// # fn main() -> Result<(), ndhistogram::Error> {
29/// // create a histogram and fill it with some values
30/// let mut hist = ndhistogram!(Uniform::new(10, 0.0, 10.0)?; Mean<i32>);
31/// hist.fill_with(&0.0, 1);
32/// hist.fill_with(&0.0, 2);
33/// hist.fill_with(&0.0, 3);
34///
35/// let mean = hist.value(&0.0);
36/// assert_eq!(mean.unwrap().get(), 2.0); // should be the mean of [1,2,3]
37/// Ok(()) }
38/// ```
39#[derive(Copy, Default, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
40#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
41pub struct Mean<T = f64, O = f64, C = u32> {
42 sumw: T,
43 sumw2: T,
44 count: C,
45 phantom_output_type: PhantomData<O>,
46}
47
48impl<C, T, O> Mean<T, O, C>
49where
50 O: From<T> + From<C> + NumOps + Signed + Copy,
51 C: Copy,
52 T: Copy,
53{
54 /// Factory method to create a Mean from a set of values.
55 ///
56 /// Usually this will not be used as a [Histogram](crate::Histogram) will
57 /// be responsible for creating and filling values.
58 pub fn new<I>(values: I) -> Self
59 where
60 I: IntoIterator<Item = T>,
61 Self: FillWith<T> + Default,
62 {
63 let mut r = Self::default();
64 values.into_iter().for_each(|it| r.fill_with(it));
65 r
66 }
67
68 /// Get the current value of the mean.
69 pub fn get(&self) -> O {
70 self.mean()
71 }
72
73 /// Get the current value of the mean.
74 pub fn mean(&self) -> <O as Div>::Output {
75 O::from(self.sumw) / O::from(self.count)
76 }
77
78 /// Get the number of times the mean value has been filled.
79 pub fn num_samples(&self) -> C {
80 self.count
81 }
82
83 /// Compute the variance of the samples.
84 pub fn variance_of_samples(&self) -> O {
85 let mean = self.mean();
86 let mean2 = mean * mean;
87 let avgsum2 = O::from(self.sumw2) / O::from(self.count);
88 abs(avgsum2 - mean2)
89 }
90
91 /// The square root of the variance of the samples.
92 pub fn standard_deviation_of_samples(&self) -> O
93 where
94 O: Float,
95 {
96 self.variance_of_samples().sqrt()
97 }
98
99 /// The square of the standard error of the mean.
100 pub fn variance_of_mean(&self) -> O {
101 self.variance_of_samples() / O::from(self.count)
102 }
103
104 /// Compute the standard error of the mean.
105 pub fn standard_error_of_mean(&self) -> O
106 where
107 O: Float,
108 {
109 self.variance_of_mean().sqrt()
110 }
111}
112
113impl<T, C, O> FillWith<T> for Mean<T, O, C>
114where
115 T: Copy + AddAssign + Mul<Output = T>,
116 C: AddAssign + One,
117{
118 #[inline]
119 fn fill_with(&mut self, data: T) {
120 self.sumw += data;
121 self.sumw2 += data * data;
122 self.count += C::one();
123 }
124}