ndarray_rand/lib.rs
1// Copyright 2016-2019 bluss and ndarray developers.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! Constructors for randomized arrays: `rand` integration for `ndarray`.
10//!
11//! See [**`RandomExt`**](trait.RandomExt.html) for usage examples.
12//!
13//! ## Note
14//!
15//! `ndarray-rand` depends on [`rand` 0.8][rand].
16//!
17//! [`rand`][rand] and [`rand_distr`][rand_distr]
18//! are re-exported as sub-modules, [`ndarray_rand::rand`](rand/index.html)
19//! and [`ndarray_rand::rand_distr`](rand_distr/index.html) respectively.
20//! You can use these submodules for guaranteed version compatibility or
21//! convenience.
22//!
23//! [rand]: https://docs.rs/rand/0.8
24//! [rand_distr]: https://docs.rs/rand_distr/0.4
25//!
26//! If you want to use a random number generator or distribution from another crate
27//! with `ndarray-rand`, you need to make sure that the other crate also depends on the
28//! same version of `rand`. Otherwise, the compiler will return errors saying
29//! that the items are not compatible (e.g. that a type doesn't implement a
30//! necessary trait).
31
32use crate::rand::distributions::{Distribution, Uniform};
33use crate::rand::rngs::SmallRng;
34use crate::rand::seq::index;
35use crate::rand::{thread_rng, Rng, SeedableRng};
36
37use ndarray::{Array, Axis, RemoveAxis, ShapeBuilder};
38use ndarray::{ArrayBase, DataOwned, RawData, Data, Dimension};
39#[cfg(feature = "quickcheck")]
40use quickcheck::{Arbitrary, Gen};
41
42/// `rand`, re-exported for convenience and version-compatibility.
43pub mod rand {
44 pub use rand::*;
45}
46
47/// `rand-distr`, re-exported for convenience and version-compatibility.
48pub mod rand_distr {
49 pub use rand_distr::*;
50}
51
52/// Constructors for n-dimensional arrays with random elements.
53///
54/// This trait extends ndarray’s `ArrayBase` and can not be implemented
55/// for other types.
56///
57/// The default RNG is a fast automatically seeded rng (currently
58/// [`rand::rngs::SmallRng`], seeded from [`rand::thread_rng`]).
59///
60/// Note that `SmallRng` is cheap to initialize and fast, but it may generate
61/// low-quality random numbers, and reproducibility is not guaranteed. See its
62/// documentation for information. You can select a different RNG with
63/// [`.random_using()`](#tymethod.random_using).
64pub trait RandomExt<S, A, D>
65where
66 S: RawData<Elem = A>,
67 D: Dimension,
68{
69 /// Create an array with shape `dim` with elements drawn from
70 /// `distribution` using the default RNG.
71 ///
72 /// ***Panics*** if creation of the RNG fails or if the number of elements
73 /// overflows usize.
74 ///
75 /// ```
76 /// use ndarray::Array;
77 /// use ndarray_rand::RandomExt;
78 /// use ndarray_rand::rand_distr::Uniform;
79 ///
80 /// # fn main() {
81 /// let a = Array::random((2, 5), Uniform::new(0., 10.));
82 /// println!("{:8.4}", a);
83 /// // Example Output:
84 /// // [[ 8.6900, 6.9824, 3.8922, 6.5861, 2.4890],
85 /// // [ 0.0914, 5.5186, 5.8135, 5.2361, 3.1879]]
86 /// # }
87 fn random<Sh, IdS>(shape: Sh, distribution: IdS) -> ArrayBase<S, D>
88 where
89 IdS: Distribution<S::Elem>,
90 S: DataOwned<Elem = A>,
91 Sh: ShapeBuilder<Dim = D>;
92
93 /// Create an array with shape `dim` with elements drawn from
94 /// `distribution`, using a specific Rng `rng`.
95 ///
96 /// ***Panics*** if the number of elements overflows usize.
97 ///
98 /// ```
99 /// use ndarray::Array;
100 /// use ndarray_rand::RandomExt;
101 /// use ndarray_rand::rand::SeedableRng;
102 /// use ndarray_rand::rand_distr::Uniform;
103 /// use rand_isaac::isaac64::Isaac64Rng;
104 ///
105 /// # fn main() {
106 /// // Get a seeded random number generator for reproducibility (Isaac64 algorithm)
107 /// let seed = 42;
108 /// let mut rng = Isaac64Rng::seed_from_u64(seed);
109 ///
110 /// // Generate a random array using `rng`
111 /// let a = Array::random_using((2, 5), Uniform::new(0., 10.), &mut rng);
112 /// println!("{:8.4}", a);
113 /// // Example Output:
114 /// // [[ 8.6900, 6.9824, 3.8922, 6.5861, 2.4890],
115 /// // [ 0.0914, 5.5186, 5.8135, 5.2361, 3.1879]]
116 /// # }
117 fn random_using<Sh, IdS, R>(shape: Sh, distribution: IdS, rng: &mut R) -> ArrayBase<S, D>
118 where
119 IdS: Distribution<S::Elem>,
120 R: Rng + ?Sized,
121 S: DataOwned<Elem = A>,
122 Sh: ShapeBuilder<Dim = D>;
123
124 /// Sample `n_samples` lanes slicing along `axis` using the default RNG.
125 ///
126 /// If `strategy==SamplingStrategy::WithoutReplacement`, each lane can only be sampled once.
127 /// If `strategy==SamplingStrategy::WithReplacement`, each lane can be sampled multiple times.
128 ///
129 /// ***Panics*** when:
130 /// - creation of the RNG fails;
131 /// - `n_samples` is greater than the length of `axis` (if sampling without replacement);
132 /// - length of `axis` is 0.
133 ///
134 /// ```
135 /// use ndarray::{array, Axis};
136 /// use ndarray_rand::{RandomExt, SamplingStrategy};
137 ///
138 /// # fn main() {
139 /// let a = array![
140 /// [1., 2., 3.],
141 /// [4., 5., 6.],
142 /// [7., 8., 9.],
143 /// [10., 11., 12.],
144 /// ];
145 /// // Sample 2 rows, without replacement
146 /// let sample_rows = a.sample_axis(Axis(0), 2, SamplingStrategy::WithoutReplacement);
147 /// println!("{:?}", sample_rows);
148 /// // Example Output: (1st and 3rd rows)
149 /// // [
150 /// // [1., 2., 3.],
151 /// // [7., 8., 9.]
152 /// // ]
153 /// // Sample 2 columns, with replacement
154 /// let sample_columns = a.sample_axis(Axis(1), 1, SamplingStrategy::WithReplacement);
155 /// println!("{:?}", sample_columns);
156 /// // Example Output: (2nd column, sampled twice)
157 /// // [
158 /// // [2., 2.],
159 /// // [5., 5.],
160 /// // [8., 8.],
161 /// // [11., 11.]
162 /// // ]
163 /// # }
164 /// ```
165 fn sample_axis(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy) -> Array<A, D>
166 where
167 A: Copy,
168 S: Data<Elem = A>,
169 D: RemoveAxis;
170
171 /// Sample `n_samples` lanes slicing along `axis` using the specified RNG `rng`.
172 ///
173 /// If `strategy==SamplingStrategy::WithoutReplacement`, each lane can only be sampled once.
174 /// If `strategy==SamplingStrategy::WithReplacement`, each lane can be sampled multiple times.
175 ///
176 /// ***Panics*** when:
177 /// - creation of the RNG fails;
178 /// - `n_samples` is greater than the length of `axis` (if sampling without replacement);
179 /// - length of `axis` is 0.
180 ///
181 /// ```
182 /// use ndarray::{array, Axis};
183 /// use ndarray_rand::{RandomExt, SamplingStrategy};
184 /// use ndarray_rand::rand::SeedableRng;
185 /// use rand_isaac::isaac64::Isaac64Rng;
186 ///
187 /// # fn main() {
188 /// // Get a seeded random number generator for reproducibility (Isaac64 algorithm)
189 /// let seed = 42;
190 /// let mut rng = Isaac64Rng::seed_from_u64(seed);
191 ///
192 /// let a = array![
193 /// [1., 2., 3.],
194 /// [4., 5., 6.],
195 /// [7., 8., 9.],
196 /// [10., 11., 12.],
197 /// ];
198 /// // Sample 2 rows, without replacement
199 /// let sample_rows = a.sample_axis_using(Axis(0), 2, SamplingStrategy::WithoutReplacement, &mut rng);
200 /// println!("{:?}", sample_rows);
201 /// // Example Output: (1st and 3rd rows)
202 /// // [
203 /// // [1., 2., 3.],
204 /// // [7., 8., 9.]
205 /// // ]
206 ///
207 /// // Sample 2 columns, with replacement
208 /// let sample_columns = a.sample_axis_using(Axis(1), 1, SamplingStrategy::WithReplacement, &mut rng);
209 /// println!("{:?}", sample_columns);
210 /// // Example Output: (2nd column, sampled twice)
211 /// // [
212 /// // [2., 2.],
213 /// // [5., 5.],
214 /// // [8., 8.],
215 /// // [11., 11.]
216 /// // ]
217 /// # }
218 /// ```
219 fn sample_axis_using<R>(
220 &self,
221 axis: Axis,
222 n_samples: usize,
223 strategy: SamplingStrategy,
224 rng: &mut R,
225 ) -> Array<A, D>
226 where
227 R: Rng + ?Sized,
228 A: Copy,
229 S: Data<Elem = A>,
230 D: RemoveAxis;
231}
232
233impl<S, A, D> RandomExt<S, A, D> for ArrayBase<S, D>
234where
235 S: RawData<Elem = A>,
236 D: Dimension,
237{
238 fn random<Sh, IdS>(shape: Sh, dist: IdS) -> ArrayBase<S, D>
239 where
240 IdS: Distribution<S::Elem>,
241 S: DataOwned<Elem = A>,
242 Sh: ShapeBuilder<Dim = D>,
243 {
244 Self::random_using(shape, dist, &mut get_rng())
245 }
246
247 fn random_using<Sh, IdS, R>(shape: Sh, dist: IdS, rng: &mut R) -> ArrayBase<S, D>
248 where
249 IdS: Distribution<S::Elem>,
250 R: Rng + ?Sized,
251 S: DataOwned<Elem = A>,
252 Sh: ShapeBuilder<Dim = D>,
253 {
254 Self::from_shape_simple_fn(shape, move || dist.sample(rng))
255 }
256
257 fn sample_axis(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy) -> Array<A, D>
258 where
259 A: Copy,
260 S: Data<Elem = A>,
261 D: RemoveAxis,
262 {
263 self.sample_axis_using(axis, n_samples, strategy, &mut get_rng())
264 }
265
266 fn sample_axis_using<R>(
267 &self,
268 axis: Axis,
269 n_samples: usize,
270 strategy: SamplingStrategy,
271 rng: &mut R,
272 ) -> Array<A, D>
273 where
274 R: Rng + ?Sized,
275 A: Copy,
276 S: Data<Elem = A>,
277 D: RemoveAxis,
278 {
279 let indices: Vec<_> = match strategy {
280 SamplingStrategy::WithReplacement => {
281 let distribution = Uniform::from(0..self.len_of(axis));
282 (0..n_samples).map(|_| distribution.sample(rng)).collect()
283 }
284 SamplingStrategy::WithoutReplacement => {
285 index::sample(rng, self.len_of(axis), n_samples).into_vec()
286 }
287 };
288 self.select(axis, &indices)
289 }
290}
291
292/// Used as parameter in [`sample_axis`] and [`sample_axis_using`] to determine
293/// if lanes from the original array should only be sampled once (*without replacement*) or
294/// multiple times (*with replacement*).
295///
296/// [`sample_axis`]: trait.RandomExt.html#tymethod.sample_axis
297/// [`sample_axis_using`]: trait.RandomExt.html#tymethod.sample_axis_using
298#[derive(Debug, Clone)]
299pub enum SamplingStrategy {
300 WithReplacement,
301 WithoutReplacement,
302}
303
304// `Arbitrary` enables `quickcheck` to generate random `SamplingStrategy` values for testing.
305#[cfg(feature = "quickcheck")]
306impl Arbitrary for SamplingStrategy {
307 fn arbitrary<G: Gen>(g: &mut G) -> Self {
308 if bool::arbitrary(g) {
309 SamplingStrategy::WithReplacement
310 } else {
311 SamplingStrategy::WithoutReplacement
312 }
313 }
314}
315
316fn get_rng() -> SmallRng {
317 SmallRng::from_rng(thread_rng()).expect("create SmallRng from thread_rng failed")
318}
319
320/// A wrapper type that allows casting f64 distributions to f32
321///
322/// ```
323/// use ndarray::Array;
324/// use ndarray_rand::{RandomExt, F32};
325/// use ndarray_rand::rand_distr::Normal;
326///
327/// # fn main() {
328/// let distribution_f64 = Normal::new(0., 1.).expect("Failed to create normal distribution");
329/// let a = Array::random((2, 5), F32(distribution_f64));
330/// println!("{:8.4}", a);
331/// // Example Output:
332/// // [[ -0.6910, 1.1730, 1.0902, -0.4092, -1.7340],
333/// // [ -0.6810, 0.1678, -0.9487, 0.3150, 1.2981]]
334/// # }
335#[derive(Copy, Clone, Debug)]
336pub struct F32<S>(pub S);
337
338impl<S> Distribution<f32> for F32<S>
339where
340 S: Distribution<f64>,
341{
342 fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
343 self.0.sample(rng) as f32
344 }
345}