// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg(feature = "std")]
use num_traits::Float;
/// An iterator of a sequence of logarithmically spaced number.
///
/// Iterator element type is `F`.
pub struct Logspace<F> {
sign: F,
base: F,
start: F,
step: F,
index: usize,
len: usize,
}
impl<F> Iterator for Logspace<F>
where
F: Float,
{
type Item = F;
#[inline]
fn next(&mut self) -> Option<F> {
if self.index >= self.len {
None
} else {
// Calculate the value just like numpy.linspace does
let i = self.index;
self.index += 1;
let exponent = self.start + self.step * F::from(i).unwrap();
Some(self.sign * self.base.powf(exponent))
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let n = self.len - self.index;
(n, Some(n))
}
}
impl<F> DoubleEndedIterator for Logspace<F>
where
F: Float,
{
#[inline]
fn next_back(&mut self) -> Option<F> {
if self.index >= self.len {
None
} else {
// Calculate the value just like numpy.linspace does
self.len -= 1;
let i = self.len;
let exponent = self.start + self.step * F::from(i).unwrap();
Some(self.sign * self.base.powf(exponent))
}
}
}
impl<F> ExactSizeIterator for Logspace<F> where Logspace<F>: Iterator {}
/// An iterator of a sequence of logarithmically spaced numbers.
///
/// The `Logspace` has `n` elements, where the first element is `base.powf(a)`
/// and the last element is `base.powf(b)`. If `base` is negative, this
/// iterator will return all negative values.
///
/// The iterator element type is `F`, where `F` must implement `Float`, e.g.
/// `f32` or `f64`.
///
/// **Panics** if converting `n - 1` to type `F` fails.
#[inline]
pub fn logspace<F>(base: F, a: F, b: F, n: usize) -> Logspace<F>
where
F: Float,
{
let step = if n > 1 {
let num_steps = F::from(n - 1).expect("Converting number of steps to `A` must not fail.");
(b - a) / num_steps
} else {
F::zero()
};
Logspace {
sign: base.signum(),
base: base.abs(),
start: a,
step,
index: 0,
len: n,
}
}
#[cfg(test)]
mod tests {
use super::logspace;
#[test]
#[cfg(feature = "approx")]
fn valid() {
use crate::{arr1, Array1};
use approx::assert_abs_diff_eq;
let array: Array1<_> = logspace(10.0, 0.0, 3.0, 4).collect();
assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]));
let array: Array1<_> = logspace(10.0, 3.0, 0.0, 4).collect();
assert_abs_diff_eq!(array, arr1(&[1e3, 1e2, 1e1, 1e0]));
let array: Array1<_> = logspace(-10.0, 3.0, 0.0, 4).collect();
assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]));
let array: Array1<_> = logspace(-10.0, 0.0, 3.0, 4).collect();
assert_abs_diff_eq!(array, arr1(&[-1e0, -1e1, -1e2, -1e3]));
}
#[test]
fn iter_forward() {
let mut iter = logspace(10.0f64, 0.0, 3.0, 4);
assert!(iter.size_hint() == (4, Some(4)));
assert!((iter.next().unwrap() - 1e0).abs() < 1e-5);
assert!((iter.next().unwrap() - 1e1).abs() < 1e-5);
assert!((iter.next().unwrap() - 1e2).abs() < 1e-5);
assert!((iter.next().unwrap() - 1e3).abs() < 1e-5);
assert!(iter.next().is_none());
assert!(iter.size_hint() == (0, Some(0)));
}
#[test]
fn iter_backward() {
let mut iter = logspace(10.0f64, 0.0, 3.0, 4);
assert!(iter.size_hint() == (4, Some(4)));
assert!((iter.next_back().unwrap() - 1e3).abs() < 1e-5);
assert!((iter.next_back().unwrap() - 1e2).abs() < 1e-5);
assert!((iter.next_back().unwrap() - 1e1).abs() < 1e-5);
assert!((iter.next_back().unwrap() - 1e0).abs() < 1e-5);
assert!(iter.next_back().is_none());
assert!(iter.size_hint() == (0, Some(0)));
}
}