liftof_rb/memory.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
//! On-board memory management for readoutboards
//!
//! The DRS4 is able to map its registers and the
//! data buffer directly into OS memory.
//!
//! memory locations for the control
//! registers
//! /dev/uio0 - DRS4 control
//! /dev/uio1 - buffer 1 for blobs
//! /dev/uio2 - buffer 2 for blobs
extern crate memmap;
use std::error::Error;
use std::fs::File;
use std::fmt;
use memmap::{Mmap,
MmapMut};
use std::ptr;
use tof_dataclasses::io::RBEventMemoryStreamer;
pub const UIO0 : &'static str = "/dev/uio0";
pub const UIO1 : &'static str = "/dev/uio1";
pub const UIO2 : &'static str = "/dev/uio2";
/// Data buffer related constants
/// The data buffer is /dev/uio1
/// and /dev/uio2 are internally
/// a single buffer but with 2 halves.
///
/// Interestingly, there is a discrepancy
/// between the dma_reset when it writes
/// 68176064
pub const DATABUF_TOTAL_SIZE : usize = 66524928;
pub const EVENT_SIZE : usize = 18530;
//pub const UIO1_MIN_OCCUPANCY : u32 = 68176064;
pub const UIO1_MIN_OCCUPANCY : u32 = 68157440;
pub const UIO2_MIN_OCCUPANCY : u32 = 135266304;
pub const UIO1_MAX_OCCUPANCY : u32 = 117089408;
pub const UIO2_MAX_OCCUPANCY : u32 = 201788800;
/// The size of a 32bit unsigned int in byte
/// (all words in registers are u32)
pub const SIZEOF_U32 : usize = 4;
#[derive(Debug, Copy, Clone)]
pub enum RegisterError {
RegisterTimeOut,
MMapFail,
Unknown,
}
impl fmt::Display for RegisterError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let etype : String;
match self {
RegisterError::RegisterTimeOut => {
etype = String::from("RegisterTimeOut");
},
RegisterError::Unknown => {
etype = String::from("Unknown");
},
_ => {
etype = String::from("not defined");
}
}
write!(f, "<RegisterError: {}>", etype)
}
}
impl Error for RegisterError {
}
///! There are 2 data buffers, commonly
/// denoted as "A" and "B".
/// A -> /dev/uio1
/// B -> /dev/uio2
#[derive(Debug, Copy, Clone)]
pub enum RamBuffer {
A,
B,
//Both
}
impl RamBuffer {
pub fn invert(&self) -> RamBuffer {
match self {
RamBuffer::A => {return RamBuffer::B},
RamBuffer::B => {return RamBuffer::A}
}
}
}
/// Get a size which accomodates nevents
///
/// This means if the given size is too small
/// make sure that at least the whole next
/// event "fits in"
pub fn size_in_events(size : usize) -> usize {
size/EVENT_SIZE
}
/// Allow READ access to the memory registers at /dev/uio**
///
/// Remember we have a 32bit system
///
///
pub fn map_physical_mem_read(addr_space : &str,
addr: u32,
len: usize) -> Result<Mmap, Box<dyn Error>> {
let m = unsafe {
memmap::MmapOptions::new()
.offset(addr as u64)
.len(len)
.map(&File::open(addr_space)?)?
};
Ok(m)
}
/// Allow WRITE access to the memory registers at /dev/uio0
///
/// Write control registers.
/// Remember we have a 32bit system
///
/// # Arguments
///
/// addr : The memory address (address8) the register
/// is mapped to.
///
///
pub fn map_physical_mem_write(addr_space : &str,
addr : u32,
len : usize)
-> Result<MmapMut, Box<dyn Error>> {
let m = unsafe {
memmap::MmapOptions::new()
.offset(addr as u64)
.len(len)
.map_mut(&File::options()
.read(true)
.write(true)
.open(addr_space)?)?
};
Ok(m)
}
///! Get a single value from a 32bit (1 word) register
/// This reads ONLY control registers
/// (in /dev/uio0)
///
/// # Arguments:
///
/// * addr : The addr8 of the register
/// in /dev/uio0
///
pub fn read_control_reg(addr : u32)
-> Result<u32, RegisterError>
where
u32: std::fmt::LowerHex, {
//let sz = std::mem::size_of::<u32>();
let m = match map_physical_mem_read(UIO0, addr, SIZEOF_U32) {
Ok(m) => m,
Err(err) => {
error!("Failed to mmap: {:?}", err);
return Err(RegisterError::MMapFail);
}
};
let p = m.as_ptr() as *const u32;
let value : u32;
unsafe {
value = std::ptr::read_volatile(p.offset(0));
}
Ok(value)
}
///
pub fn write_control_reg(addr : u32,
data : u32)
-> Result<(), RegisterError>
where
u32: std::fmt::LowerHex, {
trace!("Attempting to write {data} at addr {addr}");
//let sz = std::mem::size_of::<u32>();
let m = match map_physical_mem_write(UIO0,addr,SIZEOF_U32) {
Ok(m) => m,
Err(err) => {
warn!("[write_control_reg] Failed to mmap! {:?}", err);
return Err(RegisterError::MMapFail);
}
};
let p = m.as_ptr() as *mut u32;
unsafe {
std::ptr::write_volatile(p.offset(0), data);
}
Ok(())
}
/// Read one of the data buffers and return a bytestream
/// from the given address with the length in events.
///
/// # Arguments
///
/// * which : Select data buffer to read
/// * size : in bytes
///
pub fn read_data_buffer(which : &RamBuffer,
size : usize)
-> Result<Vec::<u8>, RegisterError>
where
u32: std::fmt::LowerHex, {
let addr_space;
match which {
RamBuffer::A => addr_space = UIO1,
RamBuffer::B => addr_space = UIO2
}
//let blobsize = BlobData::SERIALIZED_SIZE;
//let vec_size = blobsize*len;
// FIXME - allocate the vector elsewhere and
// pass it by reference
let mut bytestream = Vec::<u8>::with_capacity(size);
let m = match map_physical_mem_read(addr_space, 0x0, size) {
//let mut m = match map_physical_mem_write(addr_space, 0x0, size) {
Ok(m) => m,
Err(err) => {
//let error = RegisterError {};
warn!("Failed to mmap! {:?}", err);
return Err(RegisterError::MMapFail);
}
};
//ptr::slice_from_raw_parts(raw_pointer, 3)
let p = m.as_ptr() as *const u8;
//let p = m.as_mut_ptr() as *mut u8;
let slice = ptr::slice_from_raw_parts(p, size);
unsafe {
//bytestream = Vec::<u8>::from_raw_parts(p, size, size);
bytestream.extend_from_slice(&*slice);
}
Ok(bytestream)
}
/// Read a data buffer directly into a RBEventMemory streamer,
/// avoiding the detour over vector.extend (which performs
/// clones), so this *should* actually be much more efficient.
///
/// # Arguments
/// * which : Select data buffer to read
/// * size : in bytes
/// * streamer : an instance of a RBEventMemoryStreamer
pub fn read_buffer_into_streamer(which : &RamBuffer,
size : usize,
streamer : &mut RBEventMemoryStreamer)
-> Result<(), RegisterError>
where
u32: std::fmt::LowerHex, {
let addr_space;
match which {
RamBuffer::A => addr_space = UIO1,
RamBuffer::B => addr_space = UIO2
}
let m = match map_physical_mem_read(addr_space, 0x0, size) {
//let mut m = match map_physical_mem_write(addr_space, 0x0, size) {
Ok(m) => m,
Err(err) => {
warn!("Failed to mmap: {:?}", err);
return Err(RegisterError::MMapFail);
}
};
let p = m.as_ptr() as *const u8;
//println!("Trying to get slice from raw parts");
let slice = ptr::slice_from_raw_parts(p, size);
//let mut bytestream : Vec::<u8>;
let mut bytestream = Vec::<u8>::with_capacity(200000);
println!("Trying to get bytestream from raw parts!");
unsafe {
//bytestream = Vec::from_raw_parts(p as *mut u8, size, size);
bytestream.extend_from_slice(&*slice);
}
streamer.consume(&mut bytestream);
println!(".. done!");
//Ok(bytestream)
Ok(())
}