liftof_rb/
memory.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! On-board memory management for readoutboards
//! 
//! The DRS4 is able to map its registers and the 
//! data buffer directly into OS memory.
//!
//! memory locations for the control 
//! registers
//! /dev/uio0 - DRS4 control
//! /dev/uio1 - buffer 1 for blobs
//! /dev/uio2 - buffer 2 for blobs

extern crate memmap;

use std::error::Error;
use std::fs::File;
use std::fmt;

use memmap::{Mmap,
             MmapMut};

use std::ptr;

use tof_dataclasses::io::RBEventMemoryStreamer;

pub const UIO0 : &'static str = "/dev/uio0";
pub const UIO1 : &'static str = "/dev/uio1";
pub const UIO2 : &'static str = "/dev/uio2";

/// Data buffer related constants
/// The data buffer is /dev/uio1 
/// and /dev/uio2 are internally
/// a single buffer but with 2 halves.
/// 
/// Interestingly, there is a discrepancy 
/// between the dma_reset when it writes
/// 68176064
pub const DATABUF_TOTAL_SIZE : usize = 66524928;
pub const EVENT_SIZE         : usize = 18530; 
//pub const UIO1_MIN_OCCUPANCY : u32 = 68176064;
pub const UIO1_MIN_OCCUPANCY : u32 = 68157440;
pub const UIO2_MIN_OCCUPANCY : u32 = 135266304;

pub const UIO1_MAX_OCCUPANCY : u32 = 117089408;
pub const UIO2_MAX_OCCUPANCY : u32 = 201788800;

/// The size of a 32bit unsigned int in byte
/// (all words in registers are u32)
pub const SIZEOF_U32 : usize = 4;


#[derive(Debug, Copy, Clone)]
pub enum RegisterError {
  RegisterTimeOut,
  MMapFail,
  Unknown,
}

impl fmt::Display for RegisterError {
  fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    let etype : String;
    match self {
      RegisterError::RegisterTimeOut => {
        etype = String::from("RegisterTimeOut");
      },
      RegisterError::Unknown => {
        etype = String::from("Unknown");
      },
      _ => {
        etype = String::from("not defined");
      }
    }
    write!(f, "<RegisterError: {}>", etype)
  }
}

impl Error for RegisterError {
}


///! There are 2 data buffers, commonly 
///  denoted as "A" and "B".
///  A -> /dev/uio1
///  B -> /dev/uio2
#[derive(Debug, Copy, Clone)]
pub enum RamBuffer {
  A,
  B,
  //Both
}

impl RamBuffer {
  pub fn invert(&self) -> RamBuffer {
    match self {
      RamBuffer::A => {return RamBuffer::B},
      RamBuffer::B => {return RamBuffer::A}
    }
  }
}

/// Get a size which accomodates nevents
///
/// This means if the given size is too small
/// make sure that at least the whole next
/// event "fits in"
pub fn size_in_events(size : usize) -> usize {
  size/EVENT_SIZE
}

/// Allow READ access to the memory registers at /dev/uio**
///
/// Remember we have a 32bit system
///
///
pub fn map_physical_mem_read(addr_space : &str,
                             addr: u32,
                             len: usize) -> Result<Mmap, Box<dyn Error>> {
  let m = unsafe {
    memmap::MmapOptions::new()
      .offset(addr as u64)
      .len(len)
      .map(&File::open(addr_space)?)?
    };
  Ok(m)
}

/// Allow WRITE access to the memory registers at /dev/uio0
/// 
/// Write control registers.
/// Remember we have a 32bit system
///
/// # Arguments
///
/// addr : The memory address (address8) the register
///        is mapped to.
///
///
pub fn map_physical_mem_write(addr_space : &str,
                              addr       : u32,
                              len        : usize)
  -> Result<MmapMut, Box<dyn Error>> {
  let m = unsafe {
    memmap::MmapOptions::new()
      .offset(addr as u64)
      .len(len)
      .map_mut(&File::options()
        .read(true)
        .write(true)
        .open(addr_space)?)?
    };
  Ok(m)
}

///! Get a single value from a 32bit (1 word) register
///  This reads ONLY control registers 
///  (in /dev/uio0)
///  
///  # Arguments:
///
///  * addr : The addr8 of the register 
///           in /dev/uio0
/// 
pub fn read_control_reg(addr : u32) 
  -> Result<u32, RegisterError> 
  where
    u32: std::fmt::LowerHex, {
  
  //let sz = std::mem::size_of::<u32>();
  let m = match map_physical_mem_read(UIO0, addr, SIZEOF_U32) {
    Ok(m) => m,
    Err(err) => {
      error!("Failed to mmap: {:?}", err);
      return Err(RegisterError::MMapFail);
    }
  };
  let p = m.as_ptr() as *const u32;
  let value : u32;
  unsafe {
    value = std::ptr::read_volatile(p.offset(0));
  }
  Ok(value)
}

/// 
pub fn write_control_reg(addr       : u32,
                         data       : u32) 
  -> Result<(), RegisterError> 
  where
    u32: std::fmt::LowerHex, {
  
  trace!("Attempting to write {data} at addr {addr}");
  //let sz = std::mem::size_of::<u32>();
  let m = match map_physical_mem_write(UIO0,addr,SIZEOF_U32) {
    Ok(m) => m,
    Err(err) => {
      warn!("[write_control_reg] Failed to mmap! {:?}", err);
      return Err(RegisterError::MMapFail);
    }
  };
  let p = m.as_ptr() as *mut u32;
  unsafe {
    std::ptr::write_volatile(p.offset(0), data);
  }
  Ok(())
}


///  Read one of the data buffers and return a bytestream 
///  from the given address with the length in events.
///  
///  # Arguments
///
///  * which : Select data buffer to read 
///  * size  : in bytes
///
pub fn read_data_buffer(which : &RamBuffer, 
                        size  : usize)
    -> Result<Vec::<u8>, RegisterError> 
  where
    u32: std::fmt::LowerHex, {

  let addr_space;
  match which {
    RamBuffer::A => addr_space = UIO1,
    RamBuffer::B => addr_space = UIO2
  }
  //let blobsize = BlobData::SERIALIZED_SIZE;
  //let vec_size = blobsize*len;
  // FIXME - allocate the vector elsewhere and 
  // pass it by reference
  let mut bytestream = Vec::<u8>::with_capacity(size);
  let m = match map_physical_mem_read(addr_space, 0x0, size) {
  //let mut m = match map_physical_mem_write(addr_space, 0x0, size) {
    Ok(m) => m,
    Err(err) => {
      //let error = RegisterError {};
      warn!("Failed to mmap! {:?}", err);
      return Err(RegisterError::MMapFail);
    }
  };
 
  //ptr::slice_from_raw_parts(raw_pointer, 3) 

  let p = m.as_ptr() as *const u8;
  //let p = m.as_mut_ptr() as *mut u8;
  let slice = ptr::slice_from_raw_parts(p, size);
  unsafe {
    //bytestream  = Vec::<u8>::from_raw_parts(p, size, size);
    bytestream.extend_from_slice(&*slice); 
  }
  Ok(bytestream)
}

///  Read a data buffer directly into a RBEventMemory streamer,
///  avoiding the detour over vector.extend (which performs 
///  clones), so this *should* actually be much more efficient.
///
///  # Arguments
///     * which    : Select data buffer to read 
///     * size     : in bytes
///     * streamer : an instance of a RBEventMemoryStreamer
pub fn read_buffer_into_streamer(which    : &RamBuffer, 
                                 size     : usize,
                                 streamer : &mut RBEventMemoryStreamer)
    -> Result<(), RegisterError> 
  where
    u32: std::fmt::LowerHex, {

  let addr_space;
  match which {
    RamBuffer::A => addr_space = UIO1,
    RamBuffer::B => addr_space = UIO2
  }
  let m = match map_physical_mem_read(addr_space, 0x0, size) {
  //let mut m = match map_physical_mem_write(addr_space, 0x0, size) {
    Ok(m) => m,
    Err(err) => {
      warn!("Failed to mmap: {:?}", err);
      return Err(RegisterError::MMapFail);
    }
  };
  let p = m.as_ptr() as *const u8;
  //println!("Trying to get slice from raw parts");
  let slice = ptr::slice_from_raw_parts(p, size);
  //let mut bytestream : Vec::<u8>;
  let mut bytestream = Vec::<u8>::with_capacity(200000);
  println!("Trying to get bytestream from raw parts!");
  unsafe {
    //bytestream = Vec::from_raw_parts(p as *mut u8, size, size);
    bytestream.extend_from_slice(&*slice); 
  }
  streamer.consume(&mut bytestream);
  println!(".. done!");
  //Ok(bytestream)
  Ok(())
}