liftof_cc/threads/
readoutboard_comm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! Readoutboard communication. Get events and 
//! monitoring data

use std::collections::HashMap;

use std::sync::{
  Arc,
  Mutex,
};

use std::time::{
  Instant,
  //Duration,
};

use crossbeam_channel::Sender;

use tof_dataclasses::database::ReadoutBoard;
use tof_dataclasses::events::RBEvent;
use tof_dataclasses::packets::{
  TofPacket,
  PacketType,
};

use tof_dataclasses::serialization::{
  Serialization,
  Packable
};
use tof_dataclasses::calibrations::{
  RBCalibrations,
  RBCalibrationsFlightT,
  RBCalibrationsFlightV,
  };

use liftof_lib::{
  waveform_analysis,
};

use liftof_lib::thread_control::ThreadControl;
use liftof_lib::settings::AnalysisEngineSettings;

/*************************************/

/// Receive data from a readoutboard
///
/// In case of binary event data ("blob") this can be analyzed here
/// It is also possible to save the data directly.
///
/// In case of monitoring/other tof packets, those will be forwarded
///
/// # Arguments:
///
/// * ev_to_builder       : This thread will receive RBEvent data from the assigned RB, 
///                         if desired (see run_analysis_engine) run analysis and extract
///                         TofHits and then pass the result on to the event builder.
/// * tp_to_sink          : Channel which should be connect to a (global) data sink.
///                         Packets which are of not event type (e.g. header/full binary data)
///                         will be forwarded to the sink.
/// * rb                  : ReadoutBoard instance, as loaded from the database. This will be used
///                         for readoutboard id as well as paddle assignment.
/// * ae_settings         : Settings to configure peakfinding algorithms etc. 
///                         These can be configured with an external .toml file
pub fn readoutboard_communicator(ev_to_builder       : Sender<RBEvent>,
                                 tp_to_sink          : Sender<TofPacket>,
                                 mut rb              : ReadoutBoard,
                                 thread_control      : Arc<Mutex<ThreadControl>>) {

  let mut this_status = HashMap::<u16, bool>::new();
  for k in 1..321 {
    this_status.insert(k,false);
  }
  match rb.load_latest_calibration() {
    Err(err) => error!("Unable to load calibration for RB {}! {}", rb.rb_id, err),
    Ok(_)    => {
      info!("Loaded calibration for board {} successfully!", rb.rb_id);
    }
  }

  let zmq_ctx = zmq::Context::new();
  let board_id = rb.rb_id; //rb.id.unwrap();
  info!("initializing RB thread for board {}!", board_id);
  let mut n_errors        = 0usize;
  // how many chunks ("buffers") we dealt with
  let mut n_chunk  = 0usize;
  // in case we want to do calibratoins
  let address = rb.guess_address();

  // FIXME - this panics, however, if we can't set up the socket, what's 
  // the point of this thread?
  let socket = zmq_ctx.socket(zmq::SUB).expect("Unable to create socket!");
  match socket.connect(&address) {
    Err(err) => error!("Can not connect to socket {}, {}", address, err),
    Ok(_)    => info!("Connected to {address}")
  }
  // no need to subscribe to a topic, since there 
  // is one port for each rb
  let topic = format!("RB{:02}", board_id);
  match socket.set_subscribe(&topic.as_bytes()) {
   Err(err) => error!("Unable to subscribe to topic! {err}"),
   Ok(_)    => info!("Subscribed to {:?}!", topic),
  }
  let mut tc_timer = Instant::now();
  let mut verification_active = false;
  
  let ae_settings         : AnalysisEngineSettings; 
  let run_analysis_engine : bool;
  match thread_control.lock() {
    Ok(tc) => {
      ae_settings         = tc.liftof_settings.analysis_engine_settings.clone();
      run_analysis_engine = tc.liftof_settings.run_analysis_engine;
    }
    Err(err) => {
      error!("Can't acquire lock for ThreadControl! Unable to set calibration mode! {err}");
      error!("Ending thread, unable to acquire settings!");
      return;
    }
  }
  if run_analysis_engine {
    info!("Will run analysis engine!");
    //println!("Will use the following settings! {}", ae_settings);
  } else {
    warn!("Will not run analysis engine!");
  }

  // start continuous thread activity, read data from RB sockets,
  // do analysis and pass them on.
  loop {
    if tc_timer.elapsed().as_secs_f32() > 2.1 {
      match thread_control.try_lock() {
        Ok(mut tc) => {
          //println!("== ==> [rbcomm] tc lock acquired!");
          if tc.end_all_rb_threads {
            //println!("= => [rbcomm] initiate ending thread for RB {}!", board_id);
            tc.thread_rbcomm_active.insert(rb.rb_id,false);
            // check if all threads have ended
            let mut all_done = true;
            for (_,value) in &tc.thread_rbcomm_active {
              if *value {
                all_done = false;
              }
            }
            if all_done {
              tc.thread_event_bldr_active = false;
            }
            break;
          }
          verification_active = tc.verification_active;
          if verification_active {
            tc.detector_status.update_from_map(this_status.clone());
          }
        },
        Err(err) => {
          error!("Can't acquire lock for ThreadControl! Unable to set calibration mode! {err}");
        },
      }
      tc_timer = Instant::now();
    }
    // check if we got new data
    // this is blocking the thread
    match socket.recv_bytes(0) {
      Err(err) => {
        n_errors += 1;
        error!("Receiving from socket raised error {}", err);
      }
      Ok(buffer) => {
        // strip the first 4 bytes, since they contain the 
        // board id
        match TofPacket::from_bytestream(&buffer, &mut 4) { 
          Err(err) => {
            error!("Unknown bytestream...{:?}", err);
            continue;  
          },
          Ok(tp) => {
            //n_received += 1;
            match tp.packet_type {
              PacketType::RBEvent | PacketType::RBEventMemoryView => {
                let mut event = RBEvent::from(&tp);
                // don't create the hits if the trigger is lost (the 
                // waveform field will be empty)
                if event.hits.len() == 0 
                && !event.header.drs_lost_trigger() 
                && run_analysis_engine {
                  match waveform_analysis(&mut event, 
                                          &rb,
                                          ae_settings) {
                    Ok(_) => (),
                    Err(err) => {
                      warn!("Unable to analyze waveforms for this event! {err}");
                    }
                  }
                }
                if verification_active {
                  for h in &event.hits {
                    // average charge/peak hit
                    let verification_charge_threshhold = 10.0f32;
                    if h.get_charge_a() >= verification_charge_threshhold {
                      let status_key = h.paddle_id as u16;
                      match this_status.insert(status_key, true) {
                        Some(_) => (),
                        None => error!("Unknown paddle id! {}", h.paddle_id)
                      }
                    }
                    if h.get_charge_b() >= verification_charge_threshhold {
                      let status_key = (h.paddle_id as u16) + 160;
                      match this_status.insert(status_key, true) {
                        Some(_) => (),
                        None => error!("Unknown paddle id! {}", h.paddle_id)
                      }
                    }
                  }
                }
                if !verification_active {
                  match ev_to_builder.send(event) {
                    Ok(_) => (),
                    Err(err) => {
                      error!("Unable to send event! Err {err}");
                    }
                  }
                }
                //n_events += 1;
                n_chunk += 1;
              } 
              PacketType::RBCalibration => {
                let mut flight_v = RBCalibrationsFlightV::new();
                let mut flight_t = RBCalibrationsFlightT::new(); 

                match tp.unpack::<RBCalibrations>() {
                  Ok(cali) => {
                    flight_v = cali.emit_flightvcal();
                    flight_t = cali.emit_flighttcal(); 
                    //println!("= => [rb_comm] Received RBCalibration!");
                    match thread_control.lock() {
                      Ok(mut tc) => {
                        tc.calibrations.insert(board_id, cali.clone()); 
                        *tc.finished_calibrations.get_mut(&board_id).unwrap() = true; 
                        rb.calibration = cali;
                      }
                      Err(err) => {
                        error!("Can't acquire lock for ThreadControl!! {err}");
                      },
                    }
                  }
                  Err(err) => {
                    error!("Received calibration package, but got error when unpacking! {err}");
                  }
                }
                let flight_v_tp = flight_v.pack();
                let flight_t_tp = flight_t.pack();
                match tp_to_sink.send(flight_v_tp) {
                  Err(err) => error!("Can not send tof packet to data sink! Err {err}"),
                  Ok(_)    => debug!("Packet sent"),
                }
                match tp_to_sink.send(flight_t_tp) {
                  Err(err) => error!("Can not send tof packet to data sink! Err {err}"),
                  Ok(_)    => debug!("Packet sent"),
                }
                match tp_to_sink.send(tp) {
                  Err(err) => error!("Can not send tof packet to data sink! Err {err}"),
                  Ok(_)    => debug!("Packet sent"),
                }
              }
              _ => {
                // Currently, we will just forward all other packets
                // directly to the data sink
                match tp_to_sink.send(tp) {
                  Err(err) => error!("Can not send tof packet to data sink! Err {err}"),
                  Ok(_)    => debug!("Packet sent"),
                }
              }
            } // end match packet type
          } // end OK
        } // end match from_bytestream
      } // end ok buffer 
    } // end match 
    debug!("Digested {n_chunk} chunks!");
    debug!("Noticed {n_errors} errors!");
  } // end loop
  println!("= => [rbcomm] thread for RB {} finished! (not recoverable)", board_id);
} // end fun