lax/qr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
//! QR decomposition
use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};
pub trait QR_: Sized {
/// Execute Householder reflection as the first step of QR-decomposition
///
/// For C-continuous array,
/// this will call LQ-decomposition of the transposed matrix $ A^T = LQ^T $
fn householder(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>>;
/// Reconstruct Q-matrix from Householder-reflectors
fn q(l: MatrixLayout, a: &mut [Self], tau: &[Self]) -> Result<()>;
/// Execute QR-decomposition at once
fn qr(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>>;
}
macro_rules! impl_qr {
($scalar:ty, $qrf:path, $lqf:path, $gqr:path, $glq:path) => {
impl QR_ for $scalar {
fn householder(l: MatrixLayout, mut a: &mut [Self]) -> Result<Vec<Self>> {
let m = l.lda();
let n = l.len();
let k = m.min(n);
let mut tau = unsafe { vec_uninit(k as usize) };
// eval work size
let mut info = 0;
let mut work_size = [Self::zero()];
unsafe {
match l {
MatrixLayout::F { .. } => {
$qrf(m, n, &mut a, m, &mut tau, &mut work_size, -1, &mut info);
}
MatrixLayout::C { .. } => {
$lqf(m, n, &mut a, m, &mut tau, &mut work_size, -1, &mut info);
}
}
}
info.as_lapack_result()?;
// calc
let lwork = work_size[0].to_usize().unwrap();
let mut work = unsafe { vec_uninit(lwork) };
unsafe {
match l {
MatrixLayout::F { .. } => {
$qrf(
m,
n,
&mut a,
m,
&mut tau,
&mut work,
lwork as i32,
&mut info,
);
}
MatrixLayout::C { .. } => {
$lqf(
m,
n,
&mut a,
m,
&mut tau,
&mut work,
lwork as i32,
&mut info,
);
}
}
}
info.as_lapack_result()?;
Ok(tau)
}
fn q(l: MatrixLayout, mut a: &mut [Self], tau: &[Self]) -> Result<()> {
let m = l.lda();
let n = l.len();
let k = m.min(n);
assert_eq!(tau.len(), k as usize);
// eval work size
let mut info = 0;
let mut work_size = [Self::zero()];
unsafe {
match l {
MatrixLayout::F { .. } => {
$gqr(m, k, k, &mut a, m, &tau, &mut work_size, -1, &mut info)
}
MatrixLayout::C { .. } => {
$glq(k, n, k, &mut a, m, &tau, &mut work_size, -1, &mut info)
}
}
};
// calc
let lwork = work_size[0].to_usize().unwrap();
let mut work = unsafe { vec_uninit(lwork) };
unsafe {
match l {
MatrixLayout::F { .. } => {
$gqr(m, k, k, &mut a, m, &tau, &mut work, lwork as i32, &mut info)
}
MatrixLayout::C { .. } => {
$glq(k, n, k, &mut a, m, &tau, &mut work, lwork as i32, &mut info)
}
}
}
info.as_lapack_result()?;
Ok(())
}
fn qr(l: MatrixLayout, a: &mut [Self]) -> Result<Vec<Self>> {
let tau = Self::householder(l, a)?;
let r = Vec::from(&*a);
Self::q(l, a, &tau)?;
Ok(r)
}
}
};
} // endmacro
impl_qr!(
f64,
lapack::dgeqrf,
lapack::dgelqf,
lapack::dorgqr,
lapack::dorglq
);
impl_qr!(
f32,
lapack::sgeqrf,
lapack::sgelqf,
lapack::sorgqr,
lapack::sorglq
);
impl_qr!(
c64,
lapack::zgeqrf,
lapack::zgelqf,
lapack::zungqr,
lapack::zunglq
);
impl_qr!(
c32,
lapack::cgeqrf,
lapack::cgelqf,
lapack::cungqr,
lapack::cunglq
);