lax/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
//! Linear Algebra eXtension (LAX)
//! ===============================
//!
//! ndarray-free safe Rust wrapper for LAPACK FFI
//!
//! Linear equation, Inverse matrix, Condition number
//! --------------------------------------------------
//!
//! As the property of $A$, several types of triangular factorization are used:
//!
//! - LU-decomposition for general matrix
//! - $PA = LU$, where $L$ is lower matrix, $U$ is upper matrix, and $P$ is permutation matrix
//! - Bunch-Kaufman diagonal pivoting method for nonpositive-definite Hermitian matrix
//! - $A = U D U^\dagger$, where $U$ is upper matrix,
//! $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
//!
//! | matrix type | Triangler factorization (TRF) | Solve (TRS) | Inverse matrix (TRI) | Reciprocal condition number (CON) |
//! |:--------------------------------|:------------------------------|:------------|:---------------------|:----------------------------------|
//! | General (GE) | [lu] | [solve] | [inv] | [rcond] |
//! | Symmetric (SY) / Hermitian (HE) | [bk] | [solveh] | [invh] | - |
//!
//! [lu]: solve/trait.Solve_.html#tymethod.lu
//! [solve]: solve/trait.Solve_.html#tymethod.solve
//! [inv]: solve/trait.Solve_.html#tymethod.inv
//! [rcond]: solve/trait.Solve_.html#tymethod.rcond
//!
//! [bk]: solveh/trait.Solveh_.html#tymethod.bk
//! [solveh]: solveh/trait.Solveh_.html#tymethod.solveh
//! [invh]: solveh/trait.Solveh_.html#tymethod.invh
//!
//! Eigenvalue Problem
//! -------------------
//!
//! Solve eigenvalue problem for a matrix $A$
//!
//! $$ Av_i = \lambda_i v_i $$
//!
//! or generalized eigenvalue problem
//!
//! $$ Av_i = \lambda_i B v_i $$
//!
//! | matrix type | Eigenvalue (EV) | Generalized Eigenvalue Problem (EG) |
//! |:--------------------------------|:----------------|:------------------------------------|
//! | General (GE) |[eig] | - |
//! | Symmetric (SY) / Hermitian (HE) |[eigh] |[eigh_generalized] |
//!
//! [eig]: eig/trait.Eig_.html#tymethod.eig
//! [eigh]: eigh/trait.Eigh_.html#tymethod.eigh
//! [eigh_generalized]: eigh/trait.Eigh_.html#tymethod.eigh_generalized
//!
//! Singular Value Decomposition (SVD), Least square problem
//! ----------------------------------------------------------
//!
//! | matrix type | Singular Value Decomposition (SVD) | SVD with divided-and-conquer (SDD) | Least square problem (LSD) |
//! |:-------------|:-----------------------------------|:-----------------------------------|:---------------------------|
//! | General (GE) | [svd] | [svddc] | [least_squares] |
//!
//! [svd]: svd/trait.SVD_.html#tymethod.svd
//! [svddc]: svddck/trait.SVDDC_.html#tymethod.svddc
//! [least_squares]: least_squares/trait.LeastSquaresSvdDivideConquer_.html#tymethod.least_squares
#[cfg(any(feature = "intel-mkl-system", feature = "intel-mkl-static"))]
extern crate intel_mkl_src as _src;
#[cfg(any(feature = "openblas-system", feature = "openblas-static"))]
extern crate openblas_src as _src;
#[cfg(any(feature = "netlib-system", feature = "netlib-static"))]
extern crate netlib_src as _src;
pub mod error;
pub mod layout;
mod cholesky;
mod eig;
mod eigh;
mod least_squares;
mod opnorm;
mod qr;
mod rcond;
mod solve;
mod solveh;
mod svd;
mod svddc;
mod triangular;
mod tridiagonal;
pub use self::cholesky::*;
pub use self::eig::*;
pub use self::eigh::*;
pub use self::least_squares::*;
pub use self::opnorm::*;
pub use self::qr::*;
pub use self::rcond::*;
pub use self::solve::*;
pub use self::solveh::*;
pub use self::svd::*;
pub use self::svddc::*;
pub use self::triangular::*;
pub use self::tridiagonal::*;
use cauchy::*;
pub type Pivot = Vec<i32>;
/// Trait for primitive types which implements LAPACK subroutines
pub trait Lapack:
OperatorNorm_
+ QR_
+ SVD_
+ SVDDC_
+ Solve_
+ Solveh_
+ Cholesky_
+ Eig_
+ Eigh_
+ Triangular_
+ Tridiagonal_
+ Rcond_
+ LeastSquaresSvdDivideConquer_
{
}
impl Lapack for f32 {}
impl Lapack for f64 {}
impl Lapack for c32 {}
impl Lapack for c64 {}
/// Upper/Lower specification for seveal usages
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub enum UPLO {
Upper = b'U',
Lower = b'L',
}
impl UPLO {
pub fn t(self) -> Self {
match self {
UPLO::Upper => UPLO::Lower,
UPLO::Lower => UPLO::Upper,
}
}
}
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub enum Transpose {
No = b'N',
Transpose = b'T',
Hermite = b'C',
}
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub enum NormType {
One = b'O',
Infinity = b'I',
Frobenius = b'F',
}
impl NormType {
pub fn transpose(self) -> Self {
match self {
NormType::One => NormType::Infinity,
NormType::Infinity => NormType::One,
NormType::Frobenius => NormType::Frobenius,
}
}
}
/// Create a vector without initialization
///
/// Safety
/// ------
/// - Memory is not initialized. Do not read the memory before write.
///
unsafe fn vec_uninit<T: Sized>(n: usize) -> Vec<T> {
let mut v = Vec::with_capacity(n);
v.set_len(n);
v
}