lax/least_squares.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
//! Least squares
use crate::{error::*, layout::*, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};
/// Result of LeastSquares
pub struct LeastSquaresOutput<A: Scalar> {
/// singular values
pub singular_values: Vec<A::Real>,
/// The rank of the input matrix A
pub rank: i32,
}
/// Wraps `*gelsd`
pub trait LeastSquaresSvdDivideConquer_: Scalar {
fn least_squares(
a_layout: MatrixLayout,
a: &mut [Self],
b: &mut [Self],
) -> Result<LeastSquaresOutput<Self>>;
fn least_squares_nrhs(
a_layout: MatrixLayout,
a: &mut [Self],
b_layout: MatrixLayout,
b: &mut [Self],
) -> Result<LeastSquaresOutput<Self>>;
}
macro_rules! impl_least_squares {
(@real, $scalar:ty, $gelsd:path) => {
impl_least_squares!(@body, $scalar, $gelsd, );
};
(@complex, $scalar:ty, $gelsd:path) => {
impl_least_squares!(@body, $scalar, $gelsd, rwork);
};
(@body, $scalar:ty, $gelsd:path, $($rwork:ident),*) => {
impl LeastSquaresSvdDivideConquer_ for $scalar {
fn least_squares(
l: MatrixLayout,
a: &mut [Self],
b: &mut [Self],
) -> Result<LeastSquaresOutput<Self>> {
let b_layout = l.resized(b.len() as i32, 1);
Self::least_squares_nrhs(l, a, b_layout, b)
}
fn least_squares_nrhs(
a_layout: MatrixLayout,
a: &mut [Self],
b_layout: MatrixLayout,
b: &mut [Self],
) -> Result<LeastSquaresOutput<Self>> {
// Minimize |b - Ax|_2
//
// where
// A : (m, n)
// b : (max(m, n), nrhs) // `b` has to store `x` on exit
// x : (n, nrhs)
let (m, n) = a_layout.size();
let (m_, nrhs) = b_layout.size();
let k = m.min(n);
assert!(m_ >= m);
// Transpose if a is C-continuous
let mut a_t = None;
let a_layout = match a_layout {
MatrixLayout::C { .. } => {
a_t = Some(unsafe { vec_uninit( a.len()) });
transpose(a_layout, a, a_t.as_mut().unwrap())
}
MatrixLayout::F { .. } => a_layout,
};
// Transpose if b is C-continuous
let mut b_t = None;
let b_layout = match b_layout {
MatrixLayout::C { .. } => {
b_t = Some(unsafe { vec_uninit( b.len()) });
transpose(b_layout, b, b_t.as_mut().unwrap())
}
MatrixLayout::F { .. } => b_layout,
};
let rcond: Self::Real = -1.;
let mut singular_values: Vec<Self::Real> = unsafe { vec_uninit( k as usize) };
let mut rank: i32 = 0;
// eval work size
let mut info = 0;
let mut work_size = [Self::zero()];
let mut iwork_size = [0];
$(
let mut $rwork = [Self::Real::zero()];
)*
unsafe {
$gelsd(
m,
n,
nrhs,
a_t.as_mut().map(|v| v.as_mut_slice()).unwrap_or(a),
a_layout.lda(),
b_t.as_mut().map(|v| v.as_mut_slice()).unwrap_or(b),
b_layout.lda(),
&mut singular_values,
rcond,
&mut rank,
&mut work_size,
-1,
$(&mut $rwork,)*
&mut iwork_size,
&mut info,
)
};
info.as_lapack_result()?;
// calc
let lwork = work_size[0].to_usize().unwrap();
let mut work = unsafe { vec_uninit( lwork) };
let liwork = iwork_size[0].to_usize().unwrap();
let mut iwork = unsafe { vec_uninit( liwork) };
$(
let lrwork = $rwork[0].to_usize().unwrap();
let mut $rwork = unsafe { vec_uninit( lrwork) };
)*
unsafe {
$gelsd(
m,
n,
nrhs,
a_t.as_mut().map(|v| v.as_mut_slice()).unwrap_or(a),
a_layout.lda(),
b_t.as_mut().map(|v| v.as_mut_slice()).unwrap_or(b),
b_layout.lda(),
&mut singular_values,
rcond,
&mut rank,
&mut work,
lwork as i32,
$(&mut $rwork,)*
&mut iwork,
&mut info,
);
}
info.as_lapack_result()?;
// Skip a_t -> a transpose because A has been destroyed
// Re-transpose b
if let Some(b_t) = b_t {
transpose(b_layout, &b_t, b);
}
Ok(LeastSquaresOutput {
singular_values,
rank,
})
}
}
};
}
impl_least_squares!(@real, f64, lapack::dgelsd);
impl_least_squares!(@real, f32, lapack::sgelsd);
impl_least_squares!(@complex, c64, lapack::zgelsd);
impl_least_squares!(@complex, c32, lapack::cgelsd);