lax/eig.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
//! Eigenvalue decomposition for general matrices
use crate::{error::*, layout::MatrixLayout, *};
use cauchy::*;
use num_traits::{ToPrimitive, Zero};
/// Wraps `*geev` for general matrices
pub trait Eig_: Scalar {
/// Calculate Right eigenvalue
fn eig(
calc_v: bool,
l: MatrixLayout,
a: &mut [Self],
) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)>;
}
macro_rules! impl_eig_complex {
($scalar:ty, $ev:path) => {
impl Eig_ for $scalar {
fn eig(
calc_v: bool,
l: MatrixLayout,
mut a: &mut [Self],
) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
let (n, _) = l.size();
// LAPACK assumes a column-major input. A row-major input can
// be interpreted as the transpose of a column-major input. So,
// for row-major inputs, we we want to solve the following,
// given the column-major input `A`:
//
// A^T V = V Λ ⟺ V^T A = Λ V^T ⟺ conj(V)^H A = Λ conj(V)^H
//
// So, in this case, the right eigenvectors are the conjugates
// of the left eigenvectors computed with `A`, and the
// eigenvalues are the eigenvalues computed with `A`.
let (jobvl, jobvr) = if calc_v {
match l {
MatrixLayout::C { .. } => (b'V', b'N'),
MatrixLayout::F { .. } => (b'N', b'V'),
}
} else {
(b'N', b'N')
};
let mut eigs = unsafe { vec_uninit(n as usize) };
let mut rwork = unsafe { vec_uninit(2 * n as usize) };
let mut vl = if jobvl == b'V' {
Some(unsafe { vec_uninit((n * n) as usize) })
} else {
None
};
let mut vr = if jobvr == b'V' {
Some(unsafe { vec_uninit((n * n) as usize) })
} else {
None
};
// calc work size
let mut info = 0;
let mut work_size = [Self::zero()];
unsafe {
$ev(
jobvl,
jobvr,
n,
&mut a,
n,
&mut eigs,
&mut vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
&mut vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
&mut work_size,
-1,
&mut rwork,
&mut info,
)
};
info.as_lapack_result()?;
// actal ev
let lwork = work_size[0].to_usize().unwrap();
let mut work = unsafe { vec_uninit(lwork) };
unsafe {
$ev(
jobvl,
jobvr,
n,
&mut a,
n,
&mut eigs,
&mut vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
&mut vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
&mut work,
lwork as i32,
&mut rwork,
&mut info,
)
};
info.as_lapack_result()?;
// Hermite conjugate
if jobvl == b'V' {
for c in vl.as_mut().unwrap().iter_mut() {
c.im = -c.im
}
}
Ok((eigs, vr.or(vl).unwrap_or(Vec::new())))
}
}
};
}
impl_eig_complex!(c64, lapack::zgeev);
impl_eig_complex!(c32, lapack::cgeev);
macro_rules! impl_eig_real {
($scalar:ty, $ev:path) => {
impl Eig_ for $scalar {
fn eig(
calc_v: bool,
l: MatrixLayout,
mut a: &mut [Self],
) -> Result<(Vec<Self::Complex>, Vec<Self::Complex>)> {
let (n, _) = l.size();
// LAPACK assumes a column-major input. A row-major input can
// be interpreted as the transpose of a column-major input. So,
// for row-major inputs, we we want to solve the following,
// given the column-major input `A`:
//
// A^T V = V Λ ⟺ V^T A = Λ V^T ⟺ conj(V)^H A = Λ conj(V)^H
//
// So, in this case, the right eigenvectors are the conjugates
// of the left eigenvectors computed with `A`, and the
// eigenvalues are the eigenvalues computed with `A`.
//
// We could conjugate the eigenvalues instead of the
// eigenvectors, but we have to reconstruct the eigenvectors
// into new matrices anyway, and by not modifying the
// eigenvalues, we preserve the nice ordering specified by
// `sgeev`/`dgeev`.
let (jobvl, jobvr) = if calc_v {
match l {
MatrixLayout::C { .. } => (b'V', b'N'),
MatrixLayout::F { .. } => (b'N', b'V'),
}
} else {
(b'N', b'N')
};
let mut eig_re = unsafe { vec_uninit(n as usize) };
let mut eig_im = unsafe { vec_uninit(n as usize) };
let mut vl = if jobvl == b'V' {
Some(unsafe { vec_uninit((n * n) as usize) })
} else {
None
};
let mut vr = if jobvr == b'V' {
Some(unsafe { vec_uninit((n * n) as usize) })
} else {
None
};
// calc work size
let mut info = 0;
let mut work_size = [0.0];
unsafe {
$ev(
jobvl,
jobvr,
n,
&mut a,
n,
&mut eig_re,
&mut eig_im,
vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
&mut work_size,
-1,
&mut info,
)
};
info.as_lapack_result()?;
// actual ev
let lwork = work_size[0].to_usize().unwrap();
let mut work = unsafe { vec_uninit(lwork) };
unsafe {
$ev(
jobvl,
jobvr,
n,
&mut a,
n,
&mut eig_re,
&mut eig_im,
vl.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
vr.as_mut().map(|v| v.as_mut_slice()).unwrap_or(&mut []),
n,
&mut work,
lwork as i32,
&mut info,
)
};
info.as_lapack_result()?;
// reconstruct eigenvalues
let eigs: Vec<Self::Complex> = eig_re
.iter()
.zip(eig_im.iter())
.map(|(&re, &im)| Self::complex(re, im))
.collect();
if !calc_v {
return Ok((eigs, Vec::new()));
}
// Reconstruct eigenvectors into complex-array
// --------------------------------------------
//
// From LAPACK API https://software.intel.com/en-us/node/469230
//
// - If the j-th eigenvalue is real,
// - v(j) = VR(:,j), the j-th column of VR.
//
// - If the j-th and (j+1)-st eigenvalues form a complex conjugate pair,
// - v(j) = VR(:,j) + i*VR(:,j+1)
// - v(j+1) = VR(:,j) - i*VR(:,j+1).
//
// In the C-layout case, we need the conjugates of the left
// eigenvectors, so the signs should be reversed.
let n = n as usize;
let v = vr.or(vl).unwrap();
let mut eigvecs = unsafe { vec_uninit(n * n) };
let mut col = 0;
while col < n {
if eig_im[col] == 0. {
// The corresponding eigenvalue is real.
for row in 0..n {
let re = v[row + col * n];
eigvecs[row + col * n] = Self::complex(re, 0.);
}
col += 1;
} else {
// This is a complex conjugate pair.
assert!(col + 1 < n);
for row in 0..n {
let re = v[row + col * n];
let mut im = v[row + (col + 1) * n];
if jobvl == b'V' {
im = -im;
}
eigvecs[row + col * n] = Self::complex(re, im);
eigvecs[row + (col + 1) * n] = Self::complex(re, -im);
}
col += 2;
}
}
Ok((eigs, eigvecs))
}
}
};
}
impl_eig_real!(f64, lapack::dgeev);
impl_eig_real!(f32, lapack::sgeev);