compact_str/repr/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
use alloc::borrow::Cow;
use alloc::boxed::Box;
use core::str::Utf8Error;
use core::{
mem,
ptr,
};
#[cfg(feature = "bytes")]
mod bytes;
#[cfg(feature = "smallvec")]
mod smallvec;
mod capacity;
mod heap;
mod inline;
mod iter;
mod last_utf8_char;
mod num;
mod static_str;
mod traits;
use alloc::string::String;
use capacity::Capacity;
use heap::HeapBuffer;
use inline::InlineBuffer;
use last_utf8_char::LastUtf8Char;
use static_str::StaticStr;
pub(crate) use traits::IntoRepr;
use crate::{
ReserveError,
UnwrapWithMsg,
};
/// The max size of a string we can fit inline
pub const MAX_SIZE: usize = core::mem::size_of::<String>();
/// Used as a discriminant to identify different variants
pub const HEAP_MASK: u8 = LastUtf8Char::Heap as u8;
/// Used for `StaticStr` variant
pub const STATIC_STR_MASK: u8 = LastUtf8Char::Static as u8;
/// When our string is stored inline, we represent the length of the string in the last byte, offset
/// by `LENGTH_MASK`
pub const LENGTH_MASK: u8 = 0b11000000;
const EMPTY: Repr = Repr::const_new("");
#[repr(C)]
pub struct Repr(
// We have a pointer in the representation to properly carry provenance
*const (),
// Then we need two `usize`s (aka WORDs) of data, for the first we just define a `usize`...
usize,
// ...but the second we breakup into multiple pieces...
#[cfg(target_pointer_width = "64")] u32,
u16,
u8,
// ...so that the last byte can be a NonMax, which allows the compiler to see a niche value
LastUtf8Char,
);
static_assertions::assert_eq_size!([u8; MAX_SIZE], Repr);
unsafe impl Send for Repr {}
unsafe impl Sync for Repr {}
impl Repr {
#[inline]
pub fn new(text: &str) -> Result<Self, ReserveError> {
let len = text.len();
if len == 0 {
Ok(EMPTY)
} else if len <= MAX_SIZE {
// SAFETY: We checked that the length of text is less than or equal to MAX_SIZE
let inline = unsafe { InlineBuffer::new(text) };
Ok(Repr::from_inline(inline))
} else {
HeapBuffer::new(text).map(Repr::from_heap)
}
}
#[inline]
pub const fn const_new(text: &'static str) -> Self {
if text.len() <= MAX_SIZE {
let inline = InlineBuffer::new_const(text);
Repr::from_inline(inline)
} else {
let repr = StaticStr::new(text);
Repr::from_static(repr)
}
}
/// Create a [`Repr`] with the provided `capacity`
#[inline]
pub fn with_capacity(capacity: usize) -> Result<Self, ReserveError> {
if capacity <= MAX_SIZE {
Ok(EMPTY)
} else {
HeapBuffer::with_capacity(capacity).map(Repr::from_heap)
}
}
/// Create a [`Repr`] from a slice of bytes that is UTF-8
#[inline]
pub fn from_utf8<B: AsRef<[u8]>>(buf: B) -> Result<Self, Utf8Error> {
// Get a &str from the Vec, failing if it's not valid UTF-8
let s = core::str::from_utf8(buf.as_ref())?;
// Construct a Repr from the &str
Ok(Self::new(s).unwrap_with_msg())
}
/// Create a [`Repr`] from a slice of bytes that is UTF-8, without validating that it is indeed
/// UTF-8
///
/// # Safety
/// * The caller must guarantee that `buf` is valid UTF-8
#[inline]
pub unsafe fn from_utf8_unchecked<B: AsRef<[u8]>>(buf: B) -> Result<Self, ReserveError> {
let bytes = buf.as_ref();
let bytes_len = bytes.len();
// Create a Repr with enough capacity for the entire buffer
let mut repr = Repr::with_capacity(bytes_len)?;
// There's an edge case where the final byte of this buffer == `HEAP_MASK`, which is
// invalid UTF-8, but would result in us creating an inline variant, that identifies as
// a heap variant. If a user ever tried to reference the data at all, we'd incorrectly
// try and read data from an invalid memory address, causing undefined behavior.
if bytes_len == MAX_SIZE {
let last_byte = bytes[bytes_len - 1];
// If we hit the edge case, reserve additional space to make the repr becomes heap
// allocated, which prevents us from writing this last byte inline
if last_byte >= 0b11000000 {
repr.reserve(MAX_SIZE + 1)?;
}
}
// SAFETY: The caller is responsible for making sure the provided buffer is UTF-8. This
// invariant is documented in the public API
let slice = repr.as_mut_buf();
// write the chunk into the Repr
slice[..bytes_len].copy_from_slice(bytes);
// Set the length of the Repr
// SAFETY: We just wrote the entire `buf` into the Repr
repr.set_len(bytes_len);
Ok(repr)
}
/// Create a [`Repr`] from a [`String`], in `O(1)` time. We'll attempt to inline the string
/// if `should_inline` is `true`
///
/// Note: If the provided [`String`] is >16 MB and we're on a 32-bit arch, we'll copy the
/// `String`.
#[inline]
pub fn from_string(s: String, should_inline: bool) -> Result<Self, ReserveError> {
let og_cap = s.capacity();
let cap = Capacity::new(og_cap);
#[cold]
fn capacity_on_heap(s: String) -> Result<Repr, ReserveError> {
HeapBuffer::new(s.as_str()).map(Repr::from_heap)
}
#[cold]
fn empty() -> Result<Repr, ReserveError> {
Ok(EMPTY)
}
if cap.is_heap() {
// We only hit this case if the provided String is > 16MB and we're on a 32-bit arch. We
// expect it to be unlikely, thus we hint that to the compiler
capacity_on_heap(s)
} else if og_cap == 0 {
// We don't expect converting from an empty String often, so we make this code path cold
empty()
} else if should_inline && s.len() <= MAX_SIZE {
// SAFETY: Checked to make sure the string would fit inline
let inline = unsafe { InlineBuffer::new(s.as_str()) };
Ok(Repr::from_inline(inline))
} else {
let mut s = mem::ManuallyDrop::new(s.into_bytes());
let len = s.len();
let raw_ptr = s.as_mut_ptr();
let ptr = ptr::NonNull::new(raw_ptr).expect("string with capacity has null ptr?");
let heap = HeapBuffer { ptr, len, cap };
Ok(Repr::from_heap(heap))
}
}
/// Converts a [`Repr`] into a [`String`], in `O(1)` time, if possible
#[inline]
pub fn into_string(self) -> String {
#[cold]
fn into_string_heap(this: HeapBuffer) -> String {
// SAFETY: We know pointer is valid for `length` bytes
let slice = unsafe { core::slice::from_raw_parts(this.ptr.as_ptr(), this.len) };
// SAFETY: A `Repr` contains valid UTF-8
let s = unsafe { core::str::from_utf8_unchecked(slice) };
String::from(s)
}
if self.is_heap_allocated() {
// SAFETY: we just checked that the discriminant indicates we're a HeapBuffer
let heap_buffer = unsafe { self.into_heap() };
if heap_buffer.cap.is_heap() {
// We don't expect capacity to be on the heap often, so we mark it as cold
into_string_heap(heap_buffer)
} else {
// Wrap the BoxString in a ManuallyDrop so the underlying buffer doesn't get freed
let this = mem::ManuallyDrop::new(heap_buffer);
// SAFETY: We checked above to make sure capacity is valid
let cap = unsafe { this.cap.as_usize() };
// SAFETY:
// * The memory in `ptr` was previously allocated by the same allocator the standard
// library uses, with a required alignment of exactly 1.
// * `length` is less than or equal to capacity, due to internal invaraints.
// * `capacity` is correctly maintained internally.
// * `BoxString` only ever contains valid UTF-8.
unsafe { String::from_raw_parts(this.ptr.as_ptr(), this.len, cap) }
}
} else {
String::from(self.as_str())
}
}
/// Reserves at least `additional` bytes. If there is already enough capacity to store
/// `additional` bytes this is a no-op
#[inline]
pub fn reserve(&mut self, additional: usize) -> Result<(), ReserveError> {
let len = self.len();
let needed_capacity = len.checked_add(additional).ok_or(ReserveError(()))?;
if !self.is_static_str() && needed_capacity <= self.capacity() {
// we already have enough space, no-op
// If self.is_static_str() is true, then we would have to convert
// it to other variants since static_str variant cannot be modified.
Ok(())
} else if needed_capacity <= MAX_SIZE {
// It's possible to have a `Repr` that is heap allocated with a capacity less than
// MAX_SIZE, if that `Repr` was created From a String or Box<str>
//
// SAFETY: Our needed_capacity is >= our length, which is <= than MAX_SIZE
let inline = unsafe { InlineBuffer::new(self.as_str()) };
*self = Repr::from_inline(inline);
Ok(())
} else if !self.is_heap_allocated() {
// We're not heap allocated, but need to be, create a HeapBuffer
let heap = HeapBuffer::with_additional(self.as_str(), additional)?;
*self = Repr::from_heap(heap);
Ok(())
} else {
// We're already heap allocated, but we need more capacity
//
// SAFETY: We checked above to see if we're heap allocated
let heap_buffer = unsafe { self.as_mut_heap() };
// To reduce allocations, we amortize our growth
let amortized_capacity = heap::amortized_growth(len, additional);
// Attempt to grow our capacity, allocating a new HeapBuffer on failure
if heap_buffer.realloc(amortized_capacity).is_err() {
// Create a new HeapBuffer
let heap = HeapBuffer::with_additional(self.as_str(), additional)?;
*self = Repr::from_heap(heap);
}
Ok(())
}
}
pub fn shrink_to(&mut self, min_capacity: usize) {
// Note: We can't shrink the inline variant since it's buffer is a fixed size
// or the static str variant since it is just a pointer, so we only
// take action here if our string is heap allocated
if !self.is_heap_allocated() {
return;
}
// SAFETY: We just checked the discriminant to make sure we're heap allocated
let heap = unsafe { self.as_mut_heap() };
let old_capacity = heap.capacity();
let new_capacity = heap.len.max(min_capacity);
if new_capacity <= MAX_SIZE {
// Inline string if possible.
let mut inline = InlineBuffer::empty();
// SAFETY: Our src is on the heap, so it does not overlap with our new inline
// buffer, and the src is a `Repr` so we can assume it's valid UTF-8
unsafe {
inline
.0
.as_mut_ptr()
.copy_from_nonoverlapping(heap.ptr.as_ptr(), heap.len)
};
// SAFETY: The src we wrote from was a `Repr` which we can assume is valid UTF-8
unsafe { inline.set_len(heap.len) }
*self = Repr::from_inline(inline);
return;
}
// Return if the string cannot be strunk.
if new_capacity >= old_capacity {
return;
}
// Try to shrink in-place.
if heap.realloc(new_capacity).is_ok() {
return;
}
// Otherwise try to allocate a new, smaller chunk.
// We can ignore the error. The string keeps its old capacity, but that's okay.
if let Ok(mut new_this) = Repr::with_capacity(new_capacity) {
new_this.push_str(self.as_str());
*self = new_this;
}
}
#[inline]
pub fn push_str(&mut self, s: &str) {
// If `s` is empty, then there's no reason to reserve or push anything
// at all.
if s.is_empty() {
return;
}
let len = self.len();
let str_len = s.len();
// Reserve at least enough space to fit `s`
self.reserve(str_len).unwrap_with_msg();
// SAFETY: `s` which we're appending to the buffer, is valid UTF-8
let slice = unsafe { self.as_mut_buf() };
let push_buffer = &mut slice[len..len + str_len];
debug_assert_eq!(push_buffer.len(), s.as_bytes().len());
// Copy the string into our buffer
push_buffer.copy_from_slice(s.as_bytes());
// Increment the length of our string
//
// SAFETY: We appended `s` which is valid UTF-8, and if our size became greater than
// MAX_SIZE, our call to reserve would make us heap allocated
unsafe { self.set_len(len + str_len) };
}
#[inline]
pub fn pop(&mut self) -> Option<char> {
let ch = self.as_str().chars().next_back()?;
// SAFETY: We know this is is a valid length which falls on a char boundary
unsafe { self.set_len(self.len() - ch.len_utf8()) };
Some(ch)
}
/// Returns the string content, and only the string content, as a slice of bytes.
#[inline]
pub fn as_slice(&self) -> &[u8] {
// initially has the value of the stack pointer, conditionally becomes the heap pointer
let mut pointer = self as *const Self as *const u8;
let heap_pointer = self.0 as *const u8;
if self.last_byte() >= HEAP_MASK {
pointer = heap_pointer;
}
// initially has the value of the stack length, conditionally becomes the heap length
let mut length = core::cmp::min(
self.last_byte().wrapping_sub(LENGTH_MASK) as usize,
MAX_SIZE,
);
let heap_length = self.1;
if self.last_byte() >= HEAP_MASK {
length = heap_length;
}
// SAFETY: We know the data is valid, aligned, and part of the same contiguous allocated
// chunk. It's also valid for the lifetime of self
unsafe { core::slice::from_raw_parts(pointer, length) }
}
#[inline]
pub fn as_str(&self) -> &str {
// SAFETY: A `Repr` contains valid UTF-8
unsafe { core::str::from_utf8_unchecked(self.as_slice()) }
}
/// Returns the length of the string that we're storing
#[inline]
pub fn len(&self) -> usize {
// This ugly looking code results in two conditional moves and only one comparison, without
// branching. The outcome of a comparison is a tristate `{lt, eq, gt}`, but the compiler
// won't use this optimization if you match on `len_inline.cmp(&MAX_SIZE)`, so we have to
// do it manually.
// Force the compiler to read the variable, so it won't put the reading in a branch.
let len_heap = ensure_read(self.1);
let last_byte = self.last_byte();
// Extending the variable early results in fewer instructions, because loading and
// extending can be done in one instruction.
let mut len = (last_byte as usize)
.wrapping_sub(LENGTH_MASK as usize)
.min(MAX_SIZE);
// our discriminant is stored in the last byte and denotes stack vs heap
//
// Note: We should never add an `else` statement here, keeping the conditional simple allows
// the compiler to optimize this to a conditional-move instead of a branch
if last_byte >= HEAP_MASK {
len = len_heap;
}
len
}
/// Returns `true` if the length is 0, `false` otherwise
#[inline]
pub fn is_empty(&self) -> bool {
let len_heap = ensure_read(self.1);
let last_byte = self.last_byte() as usize;
let mut len = last_byte.wrapping_sub(LastUtf8Char::L0 as u8 as usize);
if last_byte >= LastUtf8Char::Heap as u8 as usize {
len = len_heap;
}
len == 0
}
/// Returns the overall capacity of the underlying buffer
#[inline]
pub fn capacity(&self) -> usize {
#[cold]
fn heap_capacity(this: &Repr) -> usize {
// SAFETY: We just checked the discriminant to make sure we're heap allocated
let heap_buffer = unsafe { this.as_heap() };
heap_buffer.capacity()
}
if let Some(s) = self.as_static_str() {
s.len()
} else if self.is_heap_allocated() {
heap_capacity(self)
} else {
MAX_SIZE
}
}
#[inline(always)]
pub fn is_heap_allocated(&self) -> bool {
let last_byte = self.last_byte();
last_byte == HEAP_MASK
}
#[inline(always)]
const fn is_static_str(&self) -> bool {
let last_byte = self.last_byte();
last_byte == STATIC_STR_MASK
}
#[inline]
#[rustversion::attr(since(1.64), const)]
pub fn as_static_str(&self) -> Option<&'static str> {
if self.is_static_str() {
// SAFETY: A `Repr` is transmuted from `StaticStr`
let s: &StaticStr = unsafe { &*(self as *const Self as *const StaticStr) };
Some(s.get_text())
} else {
None
}
}
#[inline]
fn as_static_variant_mut(&mut self) -> Option<&mut StaticStr> {
if self.is_static_str() {
// SAFETY: A `Repr` is transmuted from `StaticStr`
let s: &mut StaticStr = unsafe { &mut *(self as *mut Self as *mut StaticStr) };
Some(s)
} else {
None
}
}
/// Return a mutable reference to the entirely underlying buffer
///
/// # Safety
/// * Callers must guarantee that any modifications made to the buffer are valid UTF-8
pub unsafe fn as_mut_buf(&mut self) -> &mut [u8] {
#[cold]
fn inline_static_str(this: &mut Repr) {
if let Some(s) = this.as_static_str() {
*this = Repr::new(s).unwrap_with_msg();
}
}
if self.is_static_str() {
inline_static_str(self);
}
// the last byte stores our discriminant and stack length
let last_byte = self.last_byte();
let (ptr, cap) = if last_byte == HEAP_MASK {
// SAFETY: We just checked the discriminant to make sure we're heap allocated
let heap_buffer = self.as_heap();
let ptr = heap_buffer.ptr.as_ptr();
let cap = heap_buffer.capacity();
(ptr, cap)
} else {
let ptr = self as *mut Self as *mut u8;
(ptr, MAX_SIZE)
};
// SAFETY: Our data is valid for `cap` bytes, and is initialized
core::slice::from_raw_parts_mut(ptr, cap)
}
/// Sets the length of the string that our underlying buffer contains
///
/// # Safety
/// * `len` bytes in the buffer must be valid UTF-8
/// * If the underlying buffer is stored inline, `len` must be <= MAX_SIZE
pub unsafe fn set_len(&mut self, len: usize) {
if let Some(s) = self.as_static_variant_mut() {
s.set_len(len);
} else if self.is_heap_allocated() {
// SAFETY: We just checked the discriminant to make sure we're heap allocated
let heap_buffer = self.as_mut_heap();
// SAFETY: The caller guarantees that `len` bytes is valid UTF-8
heap_buffer.set_len(len);
} else {
// SAFETY: We just checked the discriminant to make sure we're an InlineBuffer
let inline_buffer = self.as_mut_inline();
// SAFETY: The caller guarantees that len <= MAX_SIZE, and `len` bytes is valid UTF-8
inline_buffer.set_len(len);
}
}
/// Returns the last byte that's on the stack.
///
/// The last byte stores the discriminant that indicates whether the string is on the stack or
/// on the heap. When the string is on the stack the last byte also stores the length
#[inline(always)]
const fn last_byte(&self) -> u8 {
cfg_if::cfg_if! {
if #[cfg(target_pointer_width = "64")] {
let last_byte = self.5;
} else if #[cfg(target_pointer_width = "32")] {
let last_byte = self.4;
} else {
compile_error!("Unsupported target_pointer_width");
}
};
last_byte as u8
}
/// Reinterprets an [`InlineBuffer`] into a [`Repr`]
///
/// Note: This is safe because [`InlineBuffer`] and [`Repr`] are the same size. We used to
/// define [`Repr`] as a `union` which implicitly transmuted between the two types, but that
/// prevented us from defining a "niche" value to make `Option<CompactString>` the same size as
/// just `CompactString`
#[inline(always)]
const fn from_inline(inline: InlineBuffer) -> Self {
// SAFETY: An `InlineBuffer` and `Repr` have the same size
unsafe { core::mem::transmute(inline) }
}
/// Reinterprets a [`HeapBuffer`] into a [`Repr`]
///
/// Note: This is safe because [`HeapBuffer`] and [`Repr`] are the same size. We used to define
/// [`Repr`] as a `union` which implicitly transmuted between the two types, but that prevented
/// us from defining a "niche" value to make `Option<CompactString>` the same size as just
/// `CompactString`
#[inline(always)]
const fn from_heap(heap: HeapBuffer) -> Self {
// SAFETY: A `HeapBuffer` and `Repr` have the same size
unsafe { core::mem::transmute(heap) }
}
/// Reinterprets a [`StaticStr`] into a [`Repr`]
///
/// Note: This is safe because [`StaticStr`] and [`Repr`] are the same size. We used to define
/// [`Repr`] as a `union` which implicitly transmuted between the two types, but that prevented
/// us from defining a "niche" value to make `Option<CompactString>` the same size as just
/// `CompactString`
#[inline(always)]
const fn from_static(heap: StaticStr) -> Self {
// SAFETY: A `StaticStr` and `Repr` have the same size
unsafe { core::mem::transmute(heap) }
}
/// Reinterprets a [`Repr`] as a [`HeapBuffer`]
///
/// # SAFETY
/// * The caller must guarantee that the provided [`Repr`] is actually a [`HeapBuffer`] by
/// checking the discriminant.
///
/// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
/// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
/// the same size as just `CompactString`
#[inline(always)]
const unsafe fn into_heap(self) -> HeapBuffer {
core::mem::transmute(self)
}
/// Reinterprets a `&mut Repr` as a `&mut HeapBuffer`
///
/// # SAFETY
/// * The caller must guarantee that the provided [`Repr`] is actually a [`HeapBuffer`] by
/// checking the discriminant.
///
/// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
/// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
/// the same size as just `CompactString`
#[inline(always)]
unsafe fn as_mut_heap(&mut self) -> &mut HeapBuffer {
// SAFETY: A `HeapBuffer` and `Repr` have the same size
&mut *(self as *mut _ as *mut HeapBuffer)
}
/// Reinterprets a `&Repr` as a `&HeapBuffer`
///
/// # SAFETY
/// * The caller must guarantee that the provided [`Repr`] is actually a [`HeapBuffer`] by
/// checking the discriminant.
///
/// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
/// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
/// the same size as just `CompactString`
#[inline(always)]
unsafe fn as_heap(&self) -> &HeapBuffer {
// SAFETY: A `HeapBuffer` and `Repr` have the same size
&*(self as *const _ as *const HeapBuffer)
}
/// Reinterprets a [`Repr`] as an [`InlineBuffer`]
///
/// # SAFETY
/// * The caller must guarantee that the provided [`Repr`] is actually an [`InlineBuffer`] by
/// checking the discriminant.
///
/// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
/// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
/// the same size as just `CompactString`
#[inline(always)]
#[cfg(feature = "smallvec")]
const unsafe fn into_inline(self) -> InlineBuffer {
core::mem::transmute(self)
}
/// Reinterprets a `&mut Repr` as an `&mut InlineBuffer`
///
/// # SAFETY
/// * The caller must guarantee that the provided [`Repr`] is actually an [`InlineBuffer`] by
/// checking the discriminant.
///
/// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
/// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
/// the same size as just `CompactString`
#[inline(always)]
unsafe fn as_mut_inline(&mut self) -> &mut InlineBuffer {
// SAFETY: An `InlineBuffer` and `Repr` have the same size
&mut *(self as *mut _ as *mut InlineBuffer)
}
}
impl Clone for Repr {
#[inline]
fn clone(&self) -> Self {
#[inline(never)]
fn clone_heap(this: &Repr) -> Repr {
Repr::new(this.as_str()).unwrap_with_msg()
}
// There are only two cases we need to care about: If the string is allocated on the heap
// or not. If it is, then the data must be cloned properly, otherwise we can simply copy
// the `Repr`.
if self.is_heap_allocated() {
clone_heap(self)
} else {
// SAFETY: We just checked that `self` can be copied because it is an inline string or
// a reference to a `&'static str`.
unsafe { core::ptr::read(self) }
}
}
#[inline]
fn clone_from(&mut self, source: &Self) {
#[inline(never)]
fn clone_from_heap(this: &mut Repr, source: &Repr) {
unsafe { this.set_len(0) };
this.push_str(source.as_str());
}
// There are only two cases we need to care about: If the string is allocated on the heap
// or not. If it is, then the data must be cloned proberly, otherwise we can simply copy
// the `Repr`.
if source.is_heap_allocated() {
clone_from_heap(self, source)
} else {
// SAFETY: We just checked that `source` can be copied because it is an inline string or
// a reference to a `&'static str`.
*self = unsafe { core::ptr::read(source) }
}
}
}
impl Drop for Repr {
#[inline]
fn drop(&mut self) {
// By "outlining" the actual Drop code and only calling it if we're a heap variant, it
// allows dropping an inline variant to be as cheap as possible.
if self.is_heap_allocated() {
outlined_drop(self)
}
#[cold]
fn outlined_drop(this: &mut Repr) {
// SAFETY: We just checked the discriminant to make sure we're heap allocated
let heap_buffer = unsafe { this.as_mut_heap() };
heap_buffer.dealloc();
}
}
}
impl Extend<char> for Repr {
#[inline]
fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T) {
let iter = iter.into_iter();
let (lower_bound, _) = iter.size_hint();
if lower_bound > 0 {
// Ignore the error and hope that the lower_bound is incorrect.
let _: Result<(), ReserveError> = self.reserve(lower_bound);
}
for c in iter {
self.push_str(c.encode_utf8(&mut [0; 4]));
}
}
}
impl<'a> Extend<&'a char> for Repr {
fn extend<T: IntoIterator<Item = &'a char>>(&mut self, iter: T) {
self.extend(iter.into_iter().copied());
}
}
impl<'a> Extend<&'a str> for Repr {
fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T) {
iter.into_iter().for_each(|s| self.push_str(s));
}
}
impl Extend<Box<str>> for Repr {
fn extend<T: IntoIterator<Item = Box<str>>>(&mut self, iter: T) {
iter.into_iter().for_each(move |s| self.push_str(&s));
}
}
impl<'a> Extend<Cow<'a, str>> for Repr {
fn extend<T: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: T) {
iter.into_iter().for_each(move |s| self.push_str(&s));
}
}
impl Extend<String> for Repr {
fn extend<T: IntoIterator<Item = String>>(&mut self, iter: T) {
iter.into_iter().for_each(move |s| self.push_str(&s));
}
}
/// Returns the supplied value, and ensures that the value is eagerly loaded into a register.
#[inline(always)]
fn ensure_read(value: usize) -> usize {
// SAFETY: This assembly instruction is a noop that only affects the instruction ordering.
//
// TODO(parkmycar): Re-add loongarch and riscv once we have CI coverage for them.
#[cfg(all(
not(miri),
any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64",
)
))]
unsafe {
core::arch::asm!(
"/* {value} */",
value = in(reg) value,
options(nomem, nostack),
);
};
value
}
#[cfg(test)]
mod tests {
use alloc::string::{
String,
ToString,
};
use alloc::vec::Vec;
use quickcheck_macros::quickcheck;
use test_case::test_case;
use super::{
Repr,
MAX_SIZE,
};
use crate::ReserveError;
const EIGHTEEN_MB: usize = 18 * 1024 * 1024;
const EIGHTEEN_MB_STR: &str = unsafe { core::str::from_utf8_unchecked(&[42; EIGHTEEN_MB]) };
#[test_case("hello world!"; "inline")]
#[test_case("this is a long string that should be stored on the heap"; "heap")]
fn test_create(s: &'static str) {
let repr = Repr::new(s).unwrap();
assert_eq!(repr.as_str(), s);
assert_eq!(repr.len(), s.len());
// test StaticStr variant
let repr = Repr::const_new(s);
assert_eq!(repr.as_str(), s);
assert_eq!(repr.len(), s.len());
}
#[quickcheck]
#[cfg_attr(miri, ignore)]
fn quickcheck_create(s: String) {
let repr = Repr::new(&s).unwrap();
assert_eq!(repr.as_str(), s);
assert_eq!(repr.len(), s.len());
}
#[test_case(0; "empty")]
#[test_case(10; "short")]
#[test_case(64; "long")]
#[test_case(EIGHTEEN_MB; "huge")]
fn test_with_capacity(cap: usize) {
let r = Repr::with_capacity(cap).unwrap();
assert!(r.capacity() >= MAX_SIZE);
assert_eq!(r.len(), 0);
}
#[test_case(""; "empty")]
#[test_case("abc"; "short")]
#[test_case("hello world! I am a longer string 🦀"; "long")]
fn test_from_utf8_valid(s: &'static str) {
let bytes = s.as_bytes();
let r = Repr::from_utf8(bytes).expect("valid UTF-8");
assert_eq!(r.as_str(), s);
assert_eq!(r.len(), s.len());
}
#[quickcheck]
#[cfg_attr(miri, ignore)]
fn quickcheck_from_utf8(buf: Vec<u8>) {
match (core::str::from_utf8(&buf), Repr::from_utf8(&buf)) {
(Ok(s), Ok(r)) => {
assert_eq!(r.as_str(), s);
assert_eq!(r.len(), s.len());
}
(Err(e), Err(r)) => assert_eq!(e, r),
_ => panic!("core::str and Repr differ on what is valid UTF-8!"),
}
}
#[test_case(String::new(), true; "empty should inline")]
#[test_case(String::new(), false; "empty not inline")]
#[test_case(String::with_capacity(10), true ; "empty with small capacity inline")]
#[test_case(String::with_capacity(10), false ; "empty with small capacity not inline")]
#[test_case(String::with_capacity(128), true ; "empty with large capacity inline")]
#[test_case(String::with_capacity(128), false ; "empty with large capacity not inline")]
#[test_case(String::from("nyc 🗽"), true; "short should inline")]
#[test_case(String::from("nyc 🗽"), false ; "short not inline")]
#[test_case(String::from("this is a really long string, which is intended"), true; "long")]
#[test_case(String::from("this is a really long string, which is intended"), false; "long not inline")]
#[test_case(EIGHTEEN_MB_STR.to_string(), true ; "huge should inline")]
#[test_case(EIGHTEEN_MB_STR.to_string(), false ; "huge not inline")]
fn test_from_string(s: String, try_to_inline: bool) {
// note: when cloning a String it truncates capacity, which is why we measure these values
// before cloning the string
let s_len = s.len();
let s_cap = s.capacity();
let s_str = s.clone();
let r = Repr::from_string(s, try_to_inline).unwrap();
assert_eq!(r.len(), s_len);
assert_eq!(r.as_str(), s_str.as_str());
if s_cap == 0 || (try_to_inline && s_len <= MAX_SIZE) {
// we should inline the string, if we were asked to, and the length of the string would
// fit inline, meaning we would truncate capacity
assert!(!r.is_heap_allocated());
} else {
assert!(r.is_heap_allocated());
}
}
#[quickcheck]
#[cfg_attr(miri, ignore)]
fn quickcheck_from_string(s: String, try_to_inline: bool) {
let r = Repr::from_string(s.clone(), try_to_inline).unwrap();
assert_eq!(r.len(), s.len());
assert_eq!(r.as_str(), s.as_str());
if s.capacity() == 0 {
// we should always inline the string, if the length of the source string is 0
assert!(!r.is_heap_allocated());
} else if s.capacity() <= MAX_SIZE {
// we should inline the string, if we were asked to
assert_eq!(!r.is_heap_allocated(), try_to_inline);
} else {
assert!(r.is_heap_allocated());
}
}
#[test_case(""; "empty")]
#[test_case("nyc 🗽"; "short")]
#[test_case("this is a really long string, which is intended"; "long")]
fn test_into_string(control: &'static str) {
let r = Repr::new(control).unwrap();
let s = r.into_string();
assert_eq!(control.len(), s.len());
assert_eq!(control, s.as_str());
// test StaticStr variant
let r = Repr::const_new(control);
let s = r.into_string();
assert_eq!(control.len(), s.len());
assert_eq!(control, s.as_str());
}
#[quickcheck]
#[cfg_attr(miri, ignore)]
fn quickcheck_into_string(control: String) {
let r = Repr::new(&control).unwrap();
let s = r.into_string();
assert_eq!(control.len(), s.len());
assert_eq!(control, s.as_str());
}
#[test_case("", "a", false; "empty")]
#[test_case("", "🗽", false; "empty_emoji")]
#[test_case("abc", "🗽🙂🦀🌈👏🐶", true; "inline_to_heap")]
#[test_case("i am a long string that will be on the heap", "extra", true; "heap_to_heap")]
fn test_push_str(control: &'static str, append: &'static str, is_heap: bool) {
let mut r = Repr::new(control).unwrap();
let mut c = String::from(control);
r.push_str(append);
c.push_str(append);
assert_eq!(r.as_str(), c.as_str());
assert_eq!(r.len(), c.len());
assert_eq!(r.is_heap_allocated(), is_heap);
// test StaticStr variant
let mut r = Repr::const_new(control);
let mut c = String::from(control);
r.push_str(append);
c.push_str(append);
assert_eq!(r.as_str(), c.as_str());
assert_eq!(r.len(), c.len());
assert_eq!(r.is_heap_allocated(), is_heap);
}
#[quickcheck]
#[cfg_attr(miri, ignore)]
fn quickcheck_push_str(control: String, append: String) {
let mut r = Repr::new(&control).unwrap();
let mut c = control;
r.push_str(&append);
c.push_str(&append);
assert_eq!(r.as_str(), c.as_str());
assert_eq!(r.len(), c.len());
}
#[test_case(&[42; 0], &[42; EIGHTEEN_MB]; "empty_to_heap_capacity")]
#[test_case(&[42; 8], &[42; EIGHTEEN_MB]; "inline_to_heap_capacity")]
#[test_case(&[42; 128], &[42; EIGHTEEN_MB]; "heap_inline_to_heap_capacity")]
#[test_case(&[42; EIGHTEEN_MB], &[42; 64]; "heap_capacity_to_heap_capacity")]
fn test_push_str_from_buf(buf: &[u8], append: &[u8]) {
// The goal of this test is to exercise the scenario when our capacity is stored on the heap
let control = unsafe { core::str::from_utf8_unchecked(buf) };
let append = unsafe { core::str::from_utf8_unchecked(append) };
let mut r = Repr::new(control).unwrap();
let mut c = String::from(control);
r.push_str(append);
c.push_str(append);
assert_eq!(r.as_str(), c.as_str());
assert_eq!(r.len(), c.len());
assert!(r.is_heap_allocated());
}
#[test_case("", 0, false; "empty_zero")]
#[test_case("", 10, false; "empty_small")]
#[test_case("", 64, true; "empty_large")]
#[test_case("abc", 0, false; "short_zero")]
#[test_case("abc", 8, false; "short_small")]
#[test_case("abc", 64, true; "short_large")]
#[test_case("I am a long string that will be on the heap", 0, true; "large_zero")]
#[test_case("I am a long string that will be on the heap", 10, true; "large_small")]
#[test_case("I am a long string that will be on the heap", EIGHTEEN_MB, true; "large_huge")]
fn test_reserve(initial: &'static str, additional: usize, is_heap: bool) {
let mut r = Repr::new(initial).unwrap();
r.reserve(additional).unwrap();
assert!(r.capacity() >= initial.len() + additional);
assert_eq!(r.is_heap_allocated(), is_heap);
// Test static_str variant
let mut r = Repr::const_new(initial);
r.reserve(additional).unwrap();
assert!(r.capacity() >= initial.len() + additional);
assert_eq!(r.is_heap_allocated(), is_heap);
}
#[test]
fn test_reserve_overflow() {
let mut r = Repr::new("abc").unwrap();
let err = r.reserve(usize::MAX).unwrap_err();
assert_eq!(err, ReserveError(()));
}
#[test_case(""; "empty")]
#[test_case("abc"; "short")]
#[test_case("i am a longer string that will be on the heap"; "long")]
#[test_case(EIGHTEEN_MB_STR; "huge")]
fn test_clone(initial: &'static str) {
let r_a = Repr::new(initial).unwrap();
let r_b = r_a.clone();
assert_eq!(r_a.as_str(), initial);
assert_eq!(r_a.len(), initial.len());
assert_eq!(r_a.as_str(), r_b.as_str());
assert_eq!(r_a.len(), r_b.len());
assert_eq!(r_a.capacity(), r_b.capacity());
assert_eq!(r_a.is_heap_allocated(), r_b.is_heap_allocated());
// test StaticStr variant
let r_a = Repr::const_new(initial);
let r_b = r_a.clone();
assert_eq!(r_a.as_str(), initial);
assert_eq!(r_a.len(), initial.len());
assert_eq!(r_a.as_str(), r_b.as_str());
assert_eq!(r_a.len(), r_b.len());
assert_eq!(r_a.capacity(), r_b.capacity());
assert_eq!(r_a.is_heap_allocated(), r_b.is_heap_allocated());
}
#[test_case(Repr::const_new(""), Repr::const_new(""); "empty clone from static")]
#[test_case(Repr::const_new("abc"), Repr::const_new("efg"); "short clone from static")]
#[test_case(Repr::new("i am a longer string that will be on the heap").unwrap(), Repr::const_new(EIGHTEEN_MB_STR); "long clone from static")]
#[test_case(Repr::const_new(""), Repr::const_new(""); "empty clone from inline")]
#[test_case(Repr::const_new("abc"), Repr::const_new("efg"); "short clone from inline")]
#[test_case(Repr::new("i am a longer string that will be on the heap").unwrap(), Repr::const_new("small"); "long clone from inline")]
#[test_case(Repr::const_new(""), Repr::new(EIGHTEEN_MB_STR).unwrap(); "empty clone from heap")]
#[test_case(Repr::const_new("abc"), Repr::new(EIGHTEEN_MB_STR).unwrap(); "short clone from heap")]
#[test_case(Repr::new("i am a longer string that will be on the heap").unwrap(), Repr::new(EIGHTEEN_MB_STR).unwrap(); "long clone from heap")]
fn test_clone_from(mut initial: Repr, source: Repr) {
initial.clone_from(&source);
assert_eq!(initial.as_str(), source.as_str());
assert_eq!(initial.is_heap_allocated(), source.is_heap_allocated());
}
#[quickcheck]
#[cfg_attr(miri, ignore)]
fn quickcheck_clone(initial: String) {
let r_a = Repr::new(&initial).unwrap();
let r_b = r_a.clone();
assert_eq!(r_a.as_str(), initial);
assert_eq!(r_a.len(), initial.len());
assert_eq!(r_a.as_str(), r_b.as_str());
assert_eq!(r_a.len(), r_b.len());
assert_eq!(r_a.capacity(), r_b.capacity());
assert_eq!(r_a.is_heap_allocated(), r_b.is_heap_allocated());
}
}