compact_str/repr/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
use alloc::borrow::Cow;
use alloc::boxed::Box;
use core::str::Utf8Error;
use core::{
    mem,
    ptr,
};

#[cfg(feature = "bytes")]
mod bytes;
#[cfg(feature = "smallvec")]
mod smallvec;

mod capacity;
mod heap;
mod inline;
mod iter;
mod last_utf8_char;
mod num;
mod static_str;
mod traits;

use alloc::string::String;

use capacity::Capacity;
use heap::HeapBuffer;
use inline::InlineBuffer;
use last_utf8_char::LastUtf8Char;
use static_str::StaticStr;
pub(crate) use traits::IntoRepr;

use crate::{
    ReserveError,
    UnwrapWithMsg,
};

/// The max size of a string we can fit inline
pub const MAX_SIZE: usize = core::mem::size_of::<String>();
/// Used as a discriminant to identify different variants
pub const HEAP_MASK: u8 = LastUtf8Char::Heap as u8;
/// Used for `StaticStr` variant
pub const STATIC_STR_MASK: u8 = LastUtf8Char::Static as u8;
/// When our string is stored inline, we represent the length of the string in the last byte, offset
/// by `LENGTH_MASK`
pub const LENGTH_MASK: u8 = 0b11000000;

const EMPTY: Repr = Repr::const_new("");

#[repr(C)]
pub struct Repr(
    // We have a pointer in the representation to properly carry provenance
    *const (),
    // Then we need two `usize`s (aka WORDs) of data, for the first we just define a `usize`...
    usize,
    // ...but the second we breakup into multiple pieces...
    #[cfg(target_pointer_width = "64")] u32,
    u16,
    u8,
    // ...so that the last byte can be a NonMax, which allows the compiler to see a niche value
    LastUtf8Char,
);
static_assertions::assert_eq_size!([u8; MAX_SIZE], Repr);

unsafe impl Send for Repr {}
unsafe impl Sync for Repr {}

impl Repr {
    #[inline]
    pub fn new(text: &str) -> Result<Self, ReserveError> {
        let len = text.len();

        if len == 0 {
            Ok(EMPTY)
        } else if len <= MAX_SIZE {
            // SAFETY: We checked that the length of text is less than or equal to MAX_SIZE
            let inline = unsafe { InlineBuffer::new(text) };
            Ok(Repr::from_inline(inline))
        } else {
            HeapBuffer::new(text).map(Repr::from_heap)
        }
    }

    #[inline]
    pub const fn const_new(text: &'static str) -> Self {
        if text.len() <= MAX_SIZE {
            let inline = InlineBuffer::new_const(text);
            Repr::from_inline(inline)
        } else {
            let repr = StaticStr::new(text);
            Repr::from_static(repr)
        }
    }

    /// Create a [`Repr`] with the provided `capacity`
    #[inline]
    pub fn with_capacity(capacity: usize) -> Result<Self, ReserveError> {
        if capacity <= MAX_SIZE {
            Ok(EMPTY)
        } else {
            HeapBuffer::with_capacity(capacity).map(Repr::from_heap)
        }
    }

    /// Create a [`Repr`] from a slice of bytes that is UTF-8
    #[inline]
    pub fn from_utf8<B: AsRef<[u8]>>(buf: B) -> Result<Self, Utf8Error> {
        // Get a &str from the Vec, failing if it's not valid UTF-8
        let s = core::str::from_utf8(buf.as_ref())?;
        // Construct a Repr from the &str
        Ok(Self::new(s).unwrap_with_msg())
    }

    /// Create a [`Repr`] from a slice of bytes that is UTF-8, without validating that it is indeed
    /// UTF-8
    ///
    /// # Safety
    /// * The caller must guarantee that `buf` is valid UTF-8
    #[inline]
    pub unsafe fn from_utf8_unchecked<B: AsRef<[u8]>>(buf: B) -> Result<Self, ReserveError> {
        let bytes = buf.as_ref();
        let bytes_len = bytes.len();

        // Create a Repr with enough capacity for the entire buffer
        let mut repr = Repr::with_capacity(bytes_len)?;

        // There's an edge case where the final byte of this buffer == `HEAP_MASK`, which is
        // invalid UTF-8, but would result in us creating an inline variant, that identifies as
        // a heap variant. If a user ever tried to reference the data at all, we'd incorrectly
        // try and read data from an invalid memory address, causing undefined behavior.
        if bytes_len == MAX_SIZE {
            let last_byte = bytes[bytes_len - 1];
            // If we hit the edge case, reserve additional space to make the repr becomes heap
            // allocated, which prevents us from writing this last byte inline
            if last_byte >= 0b11000000 {
                repr.reserve(MAX_SIZE + 1)?;
            }
        }

        // SAFETY: The caller is responsible for making sure the provided buffer is UTF-8. This
        // invariant is documented in the public API
        let slice = repr.as_mut_buf();
        // write the chunk into the Repr
        slice[..bytes_len].copy_from_slice(bytes);

        // Set the length of the Repr
        // SAFETY: We just wrote the entire `buf` into the Repr
        repr.set_len(bytes_len);

        Ok(repr)
    }

    /// Create a [`Repr`] from a [`String`], in `O(1)` time. We'll attempt to inline the string
    /// if `should_inline` is `true`
    ///
    /// Note: If the provided [`String`] is >16 MB and we're on a 32-bit arch, we'll copy the
    /// `String`.
    #[inline]
    pub fn from_string(s: String, should_inline: bool) -> Result<Self, ReserveError> {
        let og_cap = s.capacity();
        let cap = Capacity::new(og_cap);

        #[cold]
        fn capacity_on_heap(s: String) -> Result<Repr, ReserveError> {
            HeapBuffer::new(s.as_str()).map(Repr::from_heap)
        }

        #[cold]
        fn empty() -> Result<Repr, ReserveError> {
            Ok(EMPTY)
        }

        if cap.is_heap() {
            // We only hit this case if the provided String is > 16MB and we're on a 32-bit arch. We
            // expect it to be unlikely, thus we hint that to the compiler
            capacity_on_heap(s)
        } else if og_cap == 0 {
            // We don't expect converting from an empty String often, so we make this code path cold
            empty()
        } else if should_inline && s.len() <= MAX_SIZE {
            // SAFETY: Checked to make sure the string would fit inline
            let inline = unsafe { InlineBuffer::new(s.as_str()) };
            Ok(Repr::from_inline(inline))
        } else {
            let mut s = mem::ManuallyDrop::new(s.into_bytes());
            let len = s.len();
            let raw_ptr = s.as_mut_ptr();

            let ptr = ptr::NonNull::new(raw_ptr).expect("string with capacity has null ptr?");
            let heap = HeapBuffer { ptr, len, cap };

            Ok(Repr::from_heap(heap))
        }
    }

    /// Converts a [`Repr`] into a [`String`], in `O(1)` time, if possible
    #[inline]
    pub fn into_string(self) -> String {
        #[cold]
        fn into_string_heap(this: HeapBuffer) -> String {
            // SAFETY: We know pointer is valid for `length` bytes
            let slice = unsafe { core::slice::from_raw_parts(this.ptr.as_ptr(), this.len) };
            // SAFETY: A `Repr` contains valid UTF-8
            let s = unsafe { core::str::from_utf8_unchecked(slice) };

            String::from(s)
        }

        if self.is_heap_allocated() {
            // SAFETY: we just checked that the discriminant indicates we're a HeapBuffer
            let heap_buffer = unsafe { self.into_heap() };

            if heap_buffer.cap.is_heap() {
                // We don't expect capacity to be on the heap often, so we mark it as cold
                into_string_heap(heap_buffer)
            } else {
                // Wrap the BoxString in a ManuallyDrop so the underlying buffer doesn't get freed
                let this = mem::ManuallyDrop::new(heap_buffer);

                // SAFETY: We checked above to make sure capacity is valid
                let cap = unsafe { this.cap.as_usize() };

                // SAFETY:
                // * The memory in `ptr` was previously allocated by the same allocator the standard
                //   library uses, with a required alignment of exactly 1.
                // * `length` is less than or equal to capacity, due to internal invaraints.
                // * `capacity` is correctly maintained internally.
                // * `BoxString` only ever contains valid UTF-8.
                unsafe { String::from_raw_parts(this.ptr.as_ptr(), this.len, cap) }
            }
        } else {
            String::from(self.as_str())
        }
    }

    /// Reserves at least `additional` bytes. If there is already enough capacity to store
    /// `additional` bytes this is a no-op
    #[inline]
    pub fn reserve(&mut self, additional: usize) -> Result<(), ReserveError> {
        let len = self.len();
        let needed_capacity = len.checked_add(additional).ok_or(ReserveError(()))?;

        if !self.is_static_str() && needed_capacity <= self.capacity() {
            // we already have enough space, no-op
            // If self.is_static_str() is true, then we would have to convert
            // it to other variants since static_str variant cannot be modified.
            Ok(())
        } else if needed_capacity <= MAX_SIZE {
            // It's possible to have a `Repr` that is heap allocated with a capacity less than
            // MAX_SIZE, if that `Repr` was created From a String or Box<str>
            //
            // SAFETY: Our needed_capacity is >= our length, which is <= than MAX_SIZE
            let inline = unsafe { InlineBuffer::new(self.as_str()) };
            *self = Repr::from_inline(inline);
            Ok(())
        } else if !self.is_heap_allocated() {
            // We're not heap allocated, but need to be, create a HeapBuffer
            let heap = HeapBuffer::with_additional(self.as_str(), additional)?;
            *self = Repr::from_heap(heap);
            Ok(())
        } else {
            // We're already heap allocated, but we need more capacity
            //
            // SAFETY: We checked above to see if we're heap allocated
            let heap_buffer = unsafe { self.as_mut_heap() };

            // To reduce allocations, we amortize our growth
            let amortized_capacity = heap::amortized_growth(len, additional);
            // Attempt to grow our capacity, allocating a new HeapBuffer on failure
            if heap_buffer.realloc(amortized_capacity).is_err() {
                // Create a new HeapBuffer
                let heap = HeapBuffer::with_additional(self.as_str(), additional)?;
                *self = Repr::from_heap(heap);
            }

            Ok(())
        }
    }

    pub fn shrink_to(&mut self, min_capacity: usize) {
        // Note: We can't shrink the inline variant since it's buffer is a fixed size
        // or the static str variant since it is just a pointer, so we only
        // take action here if our string is heap allocated
        if !self.is_heap_allocated() {
            return;
        }

        // SAFETY: We just checked the discriminant to make sure we're heap allocated
        let heap = unsafe { self.as_mut_heap() };

        let old_capacity = heap.capacity();
        let new_capacity = heap.len.max(min_capacity);

        if new_capacity <= MAX_SIZE {
            // Inline string if possible.

            let mut inline = InlineBuffer::empty();
            // SAFETY: Our src is on the heap, so it does not overlap with our new inline
            // buffer, and the src is a `Repr` so we can assume it's valid UTF-8
            unsafe {
                inline
                    .0
                    .as_mut_ptr()
                    .copy_from_nonoverlapping(heap.ptr.as_ptr(), heap.len)
            };
            // SAFETY: The src we wrote from was a `Repr` which we can assume is valid UTF-8
            unsafe { inline.set_len(heap.len) }
            *self = Repr::from_inline(inline);
            return;
        }

        // Return if the string cannot be strunk.
        if new_capacity >= old_capacity {
            return;
        }

        // Try to shrink in-place.
        if heap.realloc(new_capacity).is_ok() {
            return;
        }

        // Otherwise try to allocate a new, smaller chunk.
        // We can ignore the error. The string keeps its old capacity, but that's okay.
        if let Ok(mut new_this) = Repr::with_capacity(new_capacity) {
            new_this.push_str(self.as_str());
            *self = new_this;
        }
    }

    #[inline]
    pub fn push_str(&mut self, s: &str) {
        // If `s` is empty, then there's no reason to reserve or push anything
        // at all.
        if s.is_empty() {
            return;
        }

        let len = self.len();
        let str_len = s.len();

        // Reserve at least enough space to fit `s`
        self.reserve(str_len).unwrap_with_msg();

        // SAFETY: `s` which we're appending to the buffer, is valid UTF-8
        let slice = unsafe { self.as_mut_buf() };
        let push_buffer = &mut slice[len..len + str_len];

        debug_assert_eq!(push_buffer.len(), s.as_bytes().len());

        // Copy the string into our buffer
        push_buffer.copy_from_slice(s.as_bytes());

        // Increment the length of our string
        //
        // SAFETY: We appended `s` which is valid UTF-8, and if our size became greater than
        // MAX_SIZE, our call to reserve would make us heap allocated
        unsafe { self.set_len(len + str_len) };
    }

    #[inline]
    pub fn pop(&mut self) -> Option<char> {
        let ch = self.as_str().chars().next_back()?;

        // SAFETY: We know this is is a valid length which falls on a char boundary
        unsafe { self.set_len(self.len() - ch.len_utf8()) };

        Some(ch)
    }

    /// Returns the string content, and only the string content, as a slice of bytes.
    #[inline]
    pub fn as_slice(&self) -> &[u8] {
        // initially has the value of the stack pointer, conditionally becomes the heap pointer
        let mut pointer = self as *const Self as *const u8;
        let heap_pointer = self.0 as *const u8;
        if self.last_byte() >= HEAP_MASK {
            pointer = heap_pointer;
        }

        // initially has the value of the stack length, conditionally becomes the heap length
        let mut length = core::cmp::min(
            self.last_byte().wrapping_sub(LENGTH_MASK) as usize,
            MAX_SIZE,
        );
        let heap_length = self.1;
        if self.last_byte() >= HEAP_MASK {
            length = heap_length;
        }

        // SAFETY: We know the data is valid, aligned, and part of the same contiguous allocated
        // chunk. It's also valid for the lifetime of self
        unsafe { core::slice::from_raw_parts(pointer, length) }
    }

    #[inline]
    pub fn as_str(&self) -> &str {
        // SAFETY: A `Repr` contains valid UTF-8
        unsafe { core::str::from_utf8_unchecked(self.as_slice()) }
    }

    /// Returns the length of the string that we're storing
    #[inline]
    pub fn len(&self) -> usize {
        // This ugly looking code results in two conditional moves and only one comparison, without
        // branching. The outcome of a comparison is a tristate `{lt, eq, gt}`, but the compiler
        // won't use this optimization if you match on `len_inline.cmp(&MAX_SIZE)`, so we have to
        // do it manually.

        // Force the compiler to read the variable, so it won't put the reading in a branch.
        let len_heap = ensure_read(self.1);

        let last_byte = self.last_byte();

        // Extending the variable early results in fewer instructions, because loading and
        // extending can be done in one instruction.
        let mut len = (last_byte as usize)
            .wrapping_sub(LENGTH_MASK as usize)
            .min(MAX_SIZE);

        // our discriminant is stored in the last byte and denotes stack vs heap
        //
        // Note: We should never add an `else` statement here, keeping the conditional simple allows
        // the compiler to optimize this to a conditional-move instead of a branch
        if last_byte >= HEAP_MASK {
            len = len_heap;
        }

        len
    }

    /// Returns `true` if the length is 0, `false` otherwise
    #[inline]
    pub fn is_empty(&self) -> bool {
        let len_heap = ensure_read(self.1);
        let last_byte = self.last_byte() as usize;
        let mut len = last_byte.wrapping_sub(LastUtf8Char::L0 as u8 as usize);
        if last_byte >= LastUtf8Char::Heap as u8 as usize {
            len = len_heap;
        }
        len == 0
    }

    /// Returns the overall capacity of the underlying buffer
    #[inline]
    pub fn capacity(&self) -> usize {
        #[cold]
        fn heap_capacity(this: &Repr) -> usize {
            // SAFETY: We just checked the discriminant to make sure we're heap allocated
            let heap_buffer = unsafe { this.as_heap() };
            heap_buffer.capacity()
        }

        if let Some(s) = self.as_static_str() {
            s.len()
        } else if self.is_heap_allocated() {
            heap_capacity(self)
        } else {
            MAX_SIZE
        }
    }

    #[inline(always)]
    pub fn is_heap_allocated(&self) -> bool {
        let last_byte = self.last_byte();
        last_byte == HEAP_MASK
    }

    #[inline(always)]
    const fn is_static_str(&self) -> bool {
        let last_byte = self.last_byte();
        last_byte == STATIC_STR_MASK
    }

    #[inline]
    #[rustversion::attr(since(1.64), const)]
    pub fn as_static_str(&self) -> Option<&'static str> {
        if self.is_static_str() {
            // SAFETY: A `Repr` is transmuted from `StaticStr`
            let s: &StaticStr = unsafe { &*(self as *const Self as *const StaticStr) };
            Some(s.get_text())
        } else {
            None
        }
    }

    #[inline]
    fn as_static_variant_mut(&mut self) -> Option<&mut StaticStr> {
        if self.is_static_str() {
            // SAFETY: A `Repr` is transmuted from `StaticStr`
            let s: &mut StaticStr = unsafe { &mut *(self as *mut Self as *mut StaticStr) };
            Some(s)
        } else {
            None
        }
    }

    /// Return a mutable reference to the entirely underlying buffer
    ///
    /// # Safety
    /// * Callers must guarantee that any modifications made to the buffer are valid UTF-8
    pub unsafe fn as_mut_buf(&mut self) -> &mut [u8] {
        #[cold]
        fn inline_static_str(this: &mut Repr) {
            if let Some(s) = this.as_static_str() {
                *this = Repr::new(s).unwrap_with_msg();
            }
        }

        if self.is_static_str() {
            inline_static_str(self);
        }

        // the last byte stores our discriminant and stack length
        let last_byte = self.last_byte();

        let (ptr, cap) = if last_byte == HEAP_MASK {
            // SAFETY: We just checked the discriminant to make sure we're heap allocated
            let heap_buffer = self.as_heap();
            let ptr = heap_buffer.ptr.as_ptr();
            let cap = heap_buffer.capacity();

            (ptr, cap)
        } else {
            let ptr = self as *mut Self as *mut u8;
            (ptr, MAX_SIZE)
        };

        // SAFETY: Our data is valid for `cap` bytes, and is initialized
        core::slice::from_raw_parts_mut(ptr, cap)
    }

    /// Sets the length of the string that our underlying buffer contains
    ///
    /// # Safety
    /// * `len` bytes in the buffer must be valid UTF-8
    /// * If the underlying buffer is stored inline, `len` must be <= MAX_SIZE
    pub unsafe fn set_len(&mut self, len: usize) {
        if let Some(s) = self.as_static_variant_mut() {
            s.set_len(len);
        } else if self.is_heap_allocated() {
            // SAFETY: We just checked the discriminant to make sure we're heap allocated
            let heap_buffer = self.as_mut_heap();
            // SAFETY: The caller guarantees that `len` bytes is valid UTF-8
            heap_buffer.set_len(len);
        } else {
            // SAFETY: We just checked the discriminant to make sure we're an InlineBuffer
            let inline_buffer = self.as_mut_inline();
            // SAFETY: The caller guarantees that len <= MAX_SIZE, and `len` bytes is valid UTF-8
            inline_buffer.set_len(len);
        }
    }

    /// Returns the last byte that's on the stack.
    ///
    /// The last byte stores the discriminant that indicates whether the string is on the stack or
    /// on the heap. When the string is on the stack the last byte also stores the length
    #[inline(always)]
    const fn last_byte(&self) -> u8 {
        cfg_if::cfg_if! {
            if #[cfg(target_pointer_width = "64")] {
                let last_byte = self.5;
            } else if #[cfg(target_pointer_width = "32")] {
                let last_byte = self.4;
            } else {
                compile_error!("Unsupported target_pointer_width");
            }
        };
        last_byte as u8
    }

    /// Reinterprets an [`InlineBuffer`] into a [`Repr`]
    ///
    /// Note: This is safe because [`InlineBuffer`] and [`Repr`] are the same size. We used to
    /// define [`Repr`] as a `union` which implicitly transmuted between the two types, but that
    /// prevented us from defining a "niche" value to make `Option<CompactString>` the same size as
    /// just `CompactString`
    #[inline(always)]
    const fn from_inline(inline: InlineBuffer) -> Self {
        // SAFETY: An `InlineBuffer` and `Repr` have the same size
        unsafe { core::mem::transmute(inline) }
    }

    /// Reinterprets a [`HeapBuffer`] into a [`Repr`]
    ///
    /// Note: This is safe because [`HeapBuffer`] and [`Repr`] are the same size. We used to define
    /// [`Repr`] as a `union` which implicitly transmuted between the two types, but that prevented
    /// us from defining a "niche" value to make `Option<CompactString>` the same size as just
    /// `CompactString`
    #[inline(always)]
    const fn from_heap(heap: HeapBuffer) -> Self {
        // SAFETY: A `HeapBuffer` and `Repr` have the same size
        unsafe { core::mem::transmute(heap) }
    }

    /// Reinterprets a [`StaticStr`] into a [`Repr`]
    ///
    /// Note: This is safe because [`StaticStr`] and [`Repr`] are the same size. We used to define
    /// [`Repr`] as a `union` which implicitly transmuted between the two types, but that prevented
    /// us from defining a "niche" value to make `Option<CompactString>` the same size as just
    /// `CompactString`
    #[inline(always)]
    const fn from_static(heap: StaticStr) -> Self {
        // SAFETY: A `StaticStr` and `Repr` have the same size
        unsafe { core::mem::transmute(heap) }
    }

    /// Reinterprets a [`Repr`] as a [`HeapBuffer`]
    ///
    /// # SAFETY
    /// * The caller must guarantee that the provided [`Repr`] is actually a [`HeapBuffer`] by
    ///   checking the discriminant.
    ///
    /// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
    /// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
    /// the same size as just `CompactString`
    #[inline(always)]
    const unsafe fn into_heap(self) -> HeapBuffer {
        core::mem::transmute(self)
    }

    /// Reinterprets a `&mut Repr` as a `&mut HeapBuffer`
    ///
    /// # SAFETY
    /// * The caller must guarantee that the provided [`Repr`] is actually a [`HeapBuffer`] by
    ///   checking the discriminant.
    ///
    /// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
    /// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
    /// the same size as just `CompactString`
    #[inline(always)]
    unsafe fn as_mut_heap(&mut self) -> &mut HeapBuffer {
        // SAFETY: A `HeapBuffer` and `Repr` have the same size
        &mut *(self as *mut _ as *mut HeapBuffer)
    }

    /// Reinterprets a `&Repr` as a `&HeapBuffer`
    ///
    /// # SAFETY
    /// * The caller must guarantee that the provided [`Repr`] is actually a [`HeapBuffer`] by
    ///   checking the discriminant.
    ///
    /// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
    /// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
    /// the same size as just `CompactString`
    #[inline(always)]
    unsafe fn as_heap(&self) -> &HeapBuffer {
        // SAFETY: A `HeapBuffer` and `Repr` have the same size
        &*(self as *const _ as *const HeapBuffer)
    }

    /// Reinterprets a [`Repr`] as an [`InlineBuffer`]
    ///
    /// # SAFETY
    /// * The caller must guarantee that the provided [`Repr`] is actually an [`InlineBuffer`] by
    ///   checking the discriminant.
    ///
    /// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
    /// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
    /// the same size as just `CompactString`
    #[inline(always)]
    #[cfg(feature = "smallvec")]
    const unsafe fn into_inline(self) -> InlineBuffer {
        core::mem::transmute(self)
    }

    /// Reinterprets a `&mut Repr` as an `&mut InlineBuffer`
    ///
    /// # SAFETY
    /// * The caller must guarantee that the provided [`Repr`] is actually an [`InlineBuffer`] by
    ///   checking the discriminant.
    ///
    /// Note: We used to define [`Repr`] as a `union` which implicitly transmuted between the two
    /// types, but that prevented us from defining a "niche" value to make `Option<CompactString>`
    /// the same size as just `CompactString`
    #[inline(always)]
    unsafe fn as_mut_inline(&mut self) -> &mut InlineBuffer {
        // SAFETY: An `InlineBuffer` and `Repr` have the same size
        &mut *(self as *mut _ as *mut InlineBuffer)
    }
}

impl Clone for Repr {
    #[inline]
    fn clone(&self) -> Self {
        #[inline(never)]
        fn clone_heap(this: &Repr) -> Repr {
            Repr::new(this.as_str()).unwrap_with_msg()
        }

        // There are only two cases we need to care about: If the string is allocated on the heap
        // or not. If it is, then the data must be cloned properly, otherwise we can simply copy
        // the `Repr`.
        if self.is_heap_allocated() {
            clone_heap(self)
        } else {
            // SAFETY: We just checked that `self` can be copied because it is an inline string or
            // a reference to a `&'static str`.
            unsafe { core::ptr::read(self) }
        }
    }

    #[inline]
    fn clone_from(&mut self, source: &Self) {
        #[inline(never)]
        fn clone_from_heap(this: &mut Repr, source: &Repr) {
            unsafe { this.set_len(0) };
            this.push_str(source.as_str());
        }

        // There are only two cases we need to care about: If the string is allocated on the heap
        // or not. If it is, then the data must be cloned proberly, otherwise we can simply copy
        // the `Repr`.
        if source.is_heap_allocated() {
            clone_from_heap(self, source)
        } else {
            // SAFETY: We just checked that `source` can be copied because it is an inline string or
            // a reference to a `&'static str`.
            *self = unsafe { core::ptr::read(source) }
        }
    }
}

impl Drop for Repr {
    #[inline]
    fn drop(&mut self) {
        // By "outlining" the actual Drop code and only calling it if we're a heap variant, it
        // allows dropping an inline variant to be as cheap as possible.
        if self.is_heap_allocated() {
            outlined_drop(self)
        }

        #[cold]
        fn outlined_drop(this: &mut Repr) {
            // SAFETY: We just checked the discriminant to make sure we're heap allocated
            let heap_buffer = unsafe { this.as_mut_heap() };
            heap_buffer.dealloc();
        }
    }
}

impl Extend<char> for Repr {
    #[inline]
    fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T) {
        let iter = iter.into_iter();

        let (lower_bound, _) = iter.size_hint();
        if lower_bound > 0 {
            // Ignore the error and hope that the lower_bound is incorrect.
            let _: Result<(), ReserveError> = self.reserve(lower_bound);
        }

        for c in iter {
            self.push_str(c.encode_utf8(&mut [0; 4]));
        }
    }
}

impl<'a> Extend<&'a char> for Repr {
    fn extend<T: IntoIterator<Item = &'a char>>(&mut self, iter: T) {
        self.extend(iter.into_iter().copied());
    }
}

impl<'a> Extend<&'a str> for Repr {
    fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T) {
        iter.into_iter().for_each(|s| self.push_str(s));
    }
}

impl Extend<Box<str>> for Repr {
    fn extend<T: IntoIterator<Item = Box<str>>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |s| self.push_str(&s));
    }
}

impl<'a> Extend<Cow<'a, str>> for Repr {
    fn extend<T: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |s| self.push_str(&s));
    }
}

impl Extend<String> for Repr {
    fn extend<T: IntoIterator<Item = String>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |s| self.push_str(&s));
    }
}

/// Returns the supplied value, and ensures that the value is eagerly loaded into a register.
#[inline(always)]
fn ensure_read(value: usize) -> usize {
    // SAFETY: This assembly instruction is a noop that only affects the instruction ordering.
    //
    // TODO(parkmycar): Re-add loongarch and riscv once we have CI coverage for them.
    #[cfg(all(
        not(miri),
        any(
            target_arch = "x86",
            target_arch = "x86_64",
            target_arch = "arm",
            target_arch = "aarch64",
        )
    ))]
    unsafe {
        core::arch::asm!(
            "/* {value} */",
            value = in(reg) value,
            options(nomem, nostack),
        );
    };

    value
}

#[cfg(test)]
mod tests {
    use alloc::string::{
        String,
        ToString,
    };
    use alloc::vec::Vec;

    use quickcheck_macros::quickcheck;
    use test_case::test_case;

    use super::{
        Repr,
        MAX_SIZE,
    };
    use crate::ReserveError;

    const EIGHTEEN_MB: usize = 18 * 1024 * 1024;
    const EIGHTEEN_MB_STR: &str = unsafe { core::str::from_utf8_unchecked(&[42; EIGHTEEN_MB]) };

    #[test_case("hello world!"; "inline")]
    #[test_case("this is a long string that should be stored on the heap"; "heap")]
    fn test_create(s: &'static str) {
        let repr = Repr::new(s).unwrap();
        assert_eq!(repr.as_str(), s);
        assert_eq!(repr.len(), s.len());

        // test StaticStr variant
        let repr = Repr::const_new(s);
        assert_eq!(repr.as_str(), s);
        assert_eq!(repr.len(), s.len());
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn quickcheck_create(s: String) {
        let repr = Repr::new(&s).unwrap();
        assert_eq!(repr.as_str(), s);
        assert_eq!(repr.len(), s.len());
    }

    #[test_case(0; "empty")]
    #[test_case(10; "short")]
    #[test_case(64; "long")]
    #[test_case(EIGHTEEN_MB; "huge")]
    fn test_with_capacity(cap: usize) {
        let r = Repr::with_capacity(cap).unwrap();
        assert!(r.capacity() >= MAX_SIZE);
        assert_eq!(r.len(), 0);
    }

    #[test_case(""; "empty")]
    #[test_case("abc"; "short")]
    #[test_case("hello world! I am a longer string 🦀"; "long")]
    fn test_from_utf8_valid(s: &'static str) {
        let bytes = s.as_bytes();
        let r = Repr::from_utf8(bytes).expect("valid UTF-8");

        assert_eq!(r.as_str(), s);
        assert_eq!(r.len(), s.len());
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn quickcheck_from_utf8(buf: Vec<u8>) {
        match (core::str::from_utf8(&buf), Repr::from_utf8(&buf)) {
            (Ok(s), Ok(r)) => {
                assert_eq!(r.as_str(), s);
                assert_eq!(r.len(), s.len());
            }
            (Err(e), Err(r)) => assert_eq!(e, r),
            _ => panic!("core::str and Repr differ on what is valid UTF-8!"),
        }
    }

    #[test_case(String::new(), true; "empty should inline")]
    #[test_case(String::new(), false; "empty not inline")]
    #[test_case(String::with_capacity(10), true ; "empty with small capacity inline")]
    #[test_case(String::with_capacity(10), false ; "empty with small capacity not inline")]
    #[test_case(String::with_capacity(128), true ; "empty with large capacity inline")]
    #[test_case(String::with_capacity(128), false ; "empty with large capacity not inline")]
    #[test_case(String::from("nyc 🗽"), true; "short should inline")]
    #[test_case(String::from("nyc 🗽"), false ; "short not inline")]
    #[test_case(String::from("this is a really long string, which is intended"), true; "long")]
    #[test_case(String::from("this is a really long string, which is intended"), false; "long not inline")]
    #[test_case(EIGHTEEN_MB_STR.to_string(), true ; "huge should inline")]
    #[test_case(EIGHTEEN_MB_STR.to_string(), false ; "huge not inline")]
    fn test_from_string(s: String, try_to_inline: bool) {
        // note: when cloning a String it truncates capacity, which is why we measure these values
        // before cloning the string
        let s_len = s.len();
        let s_cap = s.capacity();
        let s_str = s.clone();

        let r = Repr::from_string(s, try_to_inline).unwrap();

        assert_eq!(r.len(), s_len);
        assert_eq!(r.as_str(), s_str.as_str());

        if s_cap == 0 || (try_to_inline && s_len <= MAX_SIZE) {
            // we should inline the string, if we were asked to, and the length of the string would
            // fit inline, meaning we would truncate capacity
            assert!(!r.is_heap_allocated());
        } else {
            assert!(r.is_heap_allocated());
        }
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn quickcheck_from_string(s: String, try_to_inline: bool) {
        let r = Repr::from_string(s.clone(), try_to_inline).unwrap();

        assert_eq!(r.len(), s.len());
        assert_eq!(r.as_str(), s.as_str());

        if s.capacity() == 0 {
            // we should always inline the string, if the length of the source string is 0
            assert!(!r.is_heap_allocated());
        } else if s.capacity() <= MAX_SIZE {
            // we should inline the string, if we were asked to
            assert_eq!(!r.is_heap_allocated(), try_to_inline);
        } else {
            assert!(r.is_heap_allocated());
        }
    }

    #[test_case(""; "empty")]
    #[test_case("nyc 🗽"; "short")]
    #[test_case("this is a really long string, which is intended"; "long")]
    fn test_into_string(control: &'static str) {
        let r = Repr::new(control).unwrap();
        let s = r.into_string();

        assert_eq!(control.len(), s.len());
        assert_eq!(control, s.as_str());

        // test StaticStr variant
        let r = Repr::const_new(control);
        let s = r.into_string();

        assert_eq!(control.len(), s.len());
        assert_eq!(control, s.as_str());
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn quickcheck_into_string(control: String) {
        let r = Repr::new(&control).unwrap();
        let s = r.into_string();

        assert_eq!(control.len(), s.len());
        assert_eq!(control, s.as_str());
    }

    #[test_case("", "a", false; "empty")]
    #[test_case("", "🗽", false; "empty_emoji")]
    #[test_case("abc", "🗽🙂🦀🌈👏🐶", true; "inline_to_heap")]
    #[test_case("i am a long string that will be on the heap", "extra", true; "heap_to_heap")]
    fn test_push_str(control: &'static str, append: &'static str, is_heap: bool) {
        let mut r = Repr::new(control).unwrap();
        let mut c = String::from(control);

        r.push_str(append);
        c.push_str(append);

        assert_eq!(r.as_str(), c.as_str());
        assert_eq!(r.len(), c.len());

        assert_eq!(r.is_heap_allocated(), is_heap);

        // test StaticStr variant
        let mut r = Repr::const_new(control);
        let mut c = String::from(control);

        r.push_str(append);
        c.push_str(append);

        assert_eq!(r.as_str(), c.as_str());
        assert_eq!(r.len(), c.len());

        assert_eq!(r.is_heap_allocated(), is_heap);
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn quickcheck_push_str(control: String, append: String) {
        let mut r = Repr::new(&control).unwrap();
        let mut c = control;

        r.push_str(&append);
        c.push_str(&append);

        assert_eq!(r.as_str(), c.as_str());
        assert_eq!(r.len(), c.len());
    }

    #[test_case(&[42; 0], &[42; EIGHTEEN_MB]; "empty_to_heap_capacity")]
    #[test_case(&[42; 8], &[42; EIGHTEEN_MB]; "inline_to_heap_capacity")]
    #[test_case(&[42; 128], &[42; EIGHTEEN_MB]; "heap_inline_to_heap_capacity")]
    #[test_case(&[42; EIGHTEEN_MB], &[42; 64]; "heap_capacity_to_heap_capacity")]
    fn test_push_str_from_buf(buf: &[u8], append: &[u8]) {
        // The goal of this test is to exercise the scenario when our capacity is stored on the heap

        let control = unsafe { core::str::from_utf8_unchecked(buf) };
        let append = unsafe { core::str::from_utf8_unchecked(append) };

        let mut r = Repr::new(control).unwrap();
        let mut c = String::from(control);

        r.push_str(append);
        c.push_str(append);

        assert_eq!(r.as_str(), c.as_str());
        assert_eq!(r.len(), c.len());

        assert!(r.is_heap_allocated());
    }

    #[test_case("", 0, false; "empty_zero")]
    #[test_case("", 10, false; "empty_small")]
    #[test_case("", 64, true; "empty_large")]
    #[test_case("abc", 0, false; "short_zero")]
    #[test_case("abc", 8, false; "short_small")]
    #[test_case("abc", 64, true; "short_large")]
    #[test_case("I am a long string that will be on the heap", 0, true; "large_zero")]
    #[test_case("I am a long string that will be on the heap", 10, true; "large_small")]
    #[test_case("I am a long string that will be on the heap", EIGHTEEN_MB, true; "large_huge")]
    fn test_reserve(initial: &'static str, additional: usize, is_heap: bool) {
        let mut r = Repr::new(initial).unwrap();
        r.reserve(additional).unwrap();

        assert!(r.capacity() >= initial.len() + additional);
        assert_eq!(r.is_heap_allocated(), is_heap);

        // Test static_str variant
        let mut r = Repr::const_new(initial);
        r.reserve(additional).unwrap();

        assert!(r.capacity() >= initial.len() + additional);
        assert_eq!(r.is_heap_allocated(), is_heap);
    }

    #[test]
    fn test_reserve_overflow() {
        let mut r = Repr::new("abc").unwrap();
        let err = r.reserve(usize::MAX).unwrap_err();
        assert_eq!(err, ReserveError(()));
    }

    #[test_case(""; "empty")]
    #[test_case("abc"; "short")]
    #[test_case("i am a longer string that will be on the heap"; "long")]
    #[test_case(EIGHTEEN_MB_STR; "huge")]
    fn test_clone(initial: &'static str) {
        let r_a = Repr::new(initial).unwrap();
        let r_b = r_a.clone();

        assert_eq!(r_a.as_str(), initial);
        assert_eq!(r_a.len(), initial.len());

        assert_eq!(r_a.as_str(), r_b.as_str());
        assert_eq!(r_a.len(), r_b.len());
        assert_eq!(r_a.capacity(), r_b.capacity());
        assert_eq!(r_a.is_heap_allocated(), r_b.is_heap_allocated());

        // test StaticStr variant
        let r_a = Repr::const_new(initial);
        let r_b = r_a.clone();

        assert_eq!(r_a.as_str(), initial);
        assert_eq!(r_a.len(), initial.len());

        assert_eq!(r_a.as_str(), r_b.as_str());
        assert_eq!(r_a.len(), r_b.len());
        assert_eq!(r_a.capacity(), r_b.capacity());
        assert_eq!(r_a.is_heap_allocated(), r_b.is_heap_allocated());
    }

    #[test_case(Repr::const_new(""), Repr::const_new(""); "empty clone from static")]
    #[test_case(Repr::const_new("abc"), Repr::const_new("efg"); "short clone from static")]
    #[test_case(Repr::new("i am a longer string that will be on the heap").unwrap(), Repr::const_new(EIGHTEEN_MB_STR); "long clone from static")]
    #[test_case(Repr::const_new(""), Repr::const_new(""); "empty clone from inline")]
    #[test_case(Repr::const_new("abc"), Repr::const_new("efg"); "short clone from inline")]
    #[test_case(Repr::new("i am a longer string that will be on the heap").unwrap(), Repr::const_new("small"); "long clone from inline")]
    #[test_case(Repr::const_new(""), Repr::new(EIGHTEEN_MB_STR).unwrap(); "empty clone from heap")]
    #[test_case(Repr::const_new("abc"), Repr::new(EIGHTEEN_MB_STR).unwrap(); "short clone from heap")]
    #[test_case(Repr::new("i am a longer string that will be on the heap").unwrap(), Repr::new(EIGHTEEN_MB_STR).unwrap(); "long clone from heap")]
    fn test_clone_from(mut initial: Repr, source: Repr) {
        initial.clone_from(&source);
        assert_eq!(initial.as_str(), source.as_str());
        assert_eq!(initial.is_heap_allocated(), source.is_heap_allocated());
    }

    #[quickcheck]
    #[cfg_attr(miri, ignore)]
    fn quickcheck_clone(initial: String) {
        let r_a = Repr::new(&initial).unwrap();
        let r_b = r_a.clone();

        assert_eq!(r_a.as_str(), initial);
        assert_eq!(r_a.len(), initial.len());

        assert_eq!(r_a.as_str(), r_b.as_str());
        assert_eq!(r_a.len(), r_b.len());
        assert_eq!(r_a.capacity(), r_b.capacity());
        assert_eq!(r_a.is_heap_allocated(), r_b.is_heap_allocated());
    }
}