cassowary/solver_impl.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
use {
Symbol,
SymbolType,
Constraint,
Variable,
Expression,
Term,
Row,
AddConstraintError,
RemoveConstraintError,
InternalSolverError,
SuggestValueError,
AddEditVariableError,
RemoveEditVariableError,
RelationalOperator,
near_zero
};
use ::std::rc::Rc;
use ::std::cell::RefCell;
use ::std::collections::{ HashMap, HashSet };
use ::std::collections::hash_map::Entry;
#[derive(Copy, Clone)]
struct Tag {
marker: Symbol,
other: Symbol
}
#[derive(Clone)]
struct EditInfo {
tag: Tag,
constraint: Constraint,
constant: f64
}
/// A constraint solver using the Cassowary algorithm. For proper usage please see the top level crate documentation.
pub struct Solver {
cns: HashMap<Constraint, Tag>,
var_data: HashMap<Variable, (f64, Symbol, usize)>,
var_for_symbol: HashMap<Symbol, Variable>,
public_changes: Vec<(Variable, f64)>,
changed: HashSet<Variable>,
should_clear_changes: bool,
rows: HashMap<Symbol, Box<Row>>,
edits: HashMap<Variable, EditInfo>,
infeasible_rows: Vec<Symbol>, // never contains external symbols
objective: Rc<RefCell<Row>>,
artificial: Option<Rc<RefCell<Row>>>,
id_tick: usize
}
impl Solver {
/// Construct a new solver.
pub fn new() -> Solver {
Solver {
cns: HashMap::new(),
var_data: HashMap::new(),
var_for_symbol: HashMap::new(),
public_changes: Vec::new(),
changed: HashSet::new(),
should_clear_changes: false,
rows: HashMap::new(),
edits: HashMap::new(),
infeasible_rows: Vec::new(),
objective: Rc::new(RefCell::new(Row::new(0.0))),
artificial: None,
id_tick: 1
}
}
pub fn add_constraints<'a, I: IntoIterator<Item = &'a Constraint>>(
&mut self,
constraints: I) -> Result<(), AddConstraintError>
{
for constraint in constraints {
try!(self.add_constraint(constraint.clone()));
}
Ok(())
}
/// Add a constraint to the solver.
pub fn add_constraint(&mut self, constraint: Constraint) -> Result<(), AddConstraintError> {
if self.cns.contains_key(&constraint) {
return Err(AddConstraintError::DuplicateConstraint);
}
// Creating a row causes symbols to reserved for the variables
// in the constraint. If this method exits with an exception,
// then its possible those variables will linger in the var map.
// Since its likely that those variables will be used in other
// constraints and since exceptional conditions are uncommon,
// i'm not too worried about aggressive cleanup of the var map.
let (mut row, tag) = self.create_row(&constraint);
let mut subject = Solver::choose_subject(&row, &tag);
// If chooseSubject could find a valid entering symbol, one
// last option is available if the entire row is composed of
// dummy variables. If the constant of the row is zero, then
// this represents redundant constraints and the new dummy
// marker can enter the basis. If the constant is non-zero,
// then it represents an unsatisfiable constraint.
if subject.type_() == SymbolType::Invalid && Solver::all_dummies(&row) {
if !near_zero(row.constant) {
return Err(AddConstraintError::UnsatisfiableConstraint);
} else {
subject = tag.marker;
}
}
// If an entering symbol still isn't found, then the row must
// be added using an artificial variable. If that fails, then
// the row represents an unsatisfiable constraint.
if subject.type_() == SymbolType::Invalid {
if !try!(self.add_with_artificial_variable(&row)
.map_err(|e| AddConstraintError::InternalSolverError(e.0))) {
return Err(AddConstraintError::UnsatisfiableConstraint);
}
} else {
row.solve_for_symbol(subject);
self.substitute(subject, &row);
if subject.type_() == SymbolType::External && row.constant != 0.0 {
let v = self.var_for_symbol[&subject];
self.var_changed(v);
}
self.rows.insert(subject, row);
}
self.cns.insert(constraint, tag);
// Optimizing after each constraint is added performs less
// aggregate work due to a smaller average system size. It
// also ensures the solver remains in a consistent state.
let objective = self.objective.clone();
try!(self.optimise(&objective).map_err(|e| AddConstraintError::InternalSolverError(e.0)));
Ok(())
}
/// Remove a constraint from the solver.
pub fn remove_constraint(&mut self, constraint: &Constraint) -> Result<(), RemoveConstraintError> {
let tag = try!(self.cns.remove(constraint).ok_or(RemoveConstraintError::UnknownConstraint));
// Remove the error effects from the objective function
// *before* pivoting, or substitutions into the objective
// will lead to incorrect solver results.
self.remove_constraint_effects(constraint, &tag);
// If the marker is basic, simply drop the row. Otherwise,
// pivot the marker into the basis and then drop the row.
if let None = self.rows.remove(&tag.marker) {
let (leaving, mut row) = try!(self.get_marker_leaving_row(tag.marker)
.ok_or(
RemoveConstraintError::InternalSolverError(
"Failed to find leaving row.")));
row.solve_for_symbols(leaving, tag.marker);
self.substitute(tag.marker, &row);
}
// Optimizing after each constraint is removed ensures that the
// solver remains consistent. It makes the solver api easier to
// use at a small tradeoff for speed.
let objective = self.objective.clone();
try!(self.optimise(&objective).map_err(|e| RemoveConstraintError::InternalSolverError(e.0)));
// Check for and decrease the reference count for variables referenced by the constraint
// If the reference count is zero remove the variable from the variable map
for term in &constraint.expr().terms {
if !near_zero(term.coefficient) {
let mut should_remove = false;
if let Some(&mut (_, _, ref mut count)) = self.var_data.get_mut(&term.variable) {
*count -= 1;
should_remove = *count == 0;
}
if should_remove {
self.var_for_symbol.remove(&self.var_data[&term.variable].1);
self.var_data.remove(&term.variable);
}
}
}
Ok(())
}
/// Test whether a constraint has been added to the solver.
pub fn has_constraint(&self, constraint: &Constraint) -> bool {
self.cns.contains_key(constraint)
}
/// Add an edit variable to the solver.
///
/// This method should be called before the `suggest_value` method is
/// used to supply a suggested value for the given edit variable.
pub fn add_edit_variable(&mut self, v: Variable, strength: f64) -> Result<(), AddEditVariableError> {
if self.edits.contains_key(&v) {
return Err(AddEditVariableError::DuplicateEditVariable);
}
let strength = ::strength::clip(strength);
if strength == ::strength::REQUIRED {
return Err(AddEditVariableError::BadRequiredStrength);
}
let cn = Constraint::new(Expression::from_term(Term::new(v.clone(), 1.0)),
RelationalOperator::Equal,
strength);
self.add_constraint(cn.clone()).unwrap();
self.edits.insert(v.clone(), EditInfo {
tag: self.cns[&cn].clone(),
constraint: cn,
constant: 0.0
});
Ok(())
}
/// Remove an edit variable from the solver.
pub fn remove_edit_variable(&mut self, v: Variable) -> Result<(), RemoveEditVariableError> {
if let Some(constraint) = self.edits.remove(&v).map(|e| e.constraint) {
try!(self.remove_constraint(&constraint)
.map_err(|e| match e {
RemoveConstraintError::UnknownConstraint =>
RemoveEditVariableError::InternalSolverError("Edit constraint not in system"),
RemoveConstraintError::InternalSolverError(s) =>
RemoveEditVariableError::InternalSolverError(s)
}));
Ok(())
} else {
Err(RemoveEditVariableError::UnknownEditVariable)
}
}
/// Test whether an edit variable has been added to the solver.
pub fn has_edit_variable(&self, v: &Variable) -> bool {
self.edits.contains_key(v)
}
/// Suggest a value for the given edit variable.
///
/// This method should be used after an edit variable has been added to
/// the solver in order to suggest the value for that variable.
pub fn suggest_value(&mut self, variable: Variable, value: f64) -> Result<(), SuggestValueError> {
let (info_tag_marker, info_tag_other, delta) = {
let info = try!(self.edits.get_mut(&variable).ok_or(SuggestValueError::UnknownEditVariable));
let delta = value - info.constant;
info.constant = value;
(info.tag.marker, info.tag.other, delta)
};
// tag.marker and tag.other are never external symbols
// The nice version of the following code runs into non-lexical borrow issues.
// Ideally the `if row...` code would be in the body of the if. Pretend that it is.
{
let infeasible_rows = &mut self.infeasible_rows;
if self.rows.get_mut(&info_tag_marker)
.map(|row|
if row.add(-delta) < 0.0 {
infeasible_rows.push(info_tag_marker);
}).is_some()
{
} else if self.rows.get_mut(&info_tag_other)
.map(|row|
if row.add(delta) < 0.0 {
infeasible_rows.push(info_tag_other);
}).is_some()
{
} else {
for (symbol, row) in &mut self.rows {
let coeff = row.coefficient_for(info_tag_marker);
let diff = delta * coeff;
if diff != 0.0 && symbol.type_() == SymbolType::External {
let v = self.var_for_symbol[symbol];
// inline var_changed - borrow checker workaround
if self.should_clear_changes {
self.changed.clear();
self.should_clear_changes = false;
}
self.changed.insert(v);
}
if coeff != 0.0 &&
row.add(diff) < 0.0 &&
symbol.type_() != SymbolType::External
{
infeasible_rows.push(*symbol);
}
}
}
}
try!(self.dual_optimise().map_err(|e| SuggestValueError::InternalSolverError(e.0)));
return Ok(());
}
fn var_changed(&mut self, v: Variable) {
if self.should_clear_changes {
self.changed.clear();
self.should_clear_changes = false;
}
self.changed.insert(v);
}
/// Fetches all changes to the values of variables since the last call to this function.
///
/// The list of changes returned is not in a specific order. Each change comprises the variable changed and
/// the new value of that variable.
pub fn fetch_changes(&mut self) -> &[(Variable, f64)] {
if self.should_clear_changes {
self.changed.clear();
self.should_clear_changes = false;
} else {
self.should_clear_changes = true;
}
self.public_changes.clear();
for &v in &self.changed {
if let Some(var_data) = self.var_data.get_mut(&v) {
let new_value = self.rows.get(&var_data.1).map(|r| r.constant).unwrap_or(0.0);
let old_value = var_data.0;
if old_value != new_value {
self.public_changes.push((v, new_value));
var_data.0 = new_value;
}
}
}
&self.public_changes
}
/// Reset the solver to the empty starting condition.
///
/// This method resets the internal solver state to the empty starting
/// condition, as if no constraints or edit variables have been added.
/// This can be faster than deleting the solver and creating a new one
/// when the entire system must change, since it can avoid unnecessary
/// heap (de)allocations.
pub fn reset(&mut self) {
self.rows.clear();
self.cns.clear();
self.var_data.clear();
self.var_for_symbol.clear();
self.changed.clear();
self.should_clear_changes = false;
self.edits.clear();
self.infeasible_rows.clear();
*self.objective.borrow_mut() = Row::new(0.0);
self.artificial = None;
self.id_tick = 1;
}
/// Get the symbol for the given variable.
///
/// If a symbol does not exist for the variable, one will be created.
fn get_var_symbol(&mut self, v: Variable) -> Symbol {
let id_tick = &mut self.id_tick;
let var_for_symbol = &mut self.var_for_symbol;
let value = self.var_data.entry(v).or_insert_with(|| {
let s = Symbol(*id_tick, SymbolType::External);
var_for_symbol.insert(s, v);
*id_tick += 1;
(::std::f64::NAN, s, 0)
});
value.2 += 1;
value.1
}
/// Create a new Row object for the given constraint.
///
/// The terms in the constraint will be converted to cells in the row.
/// Any term in the constraint with a coefficient of zero is ignored.
/// This method uses the `getVarSymbol` method to get the symbol for
/// the variables added to the row. If the symbol for a given cell
/// variable is basic, the cell variable will be substituted with the
/// basic row.
///
/// The necessary slack and error variables will be added to the row.
/// If the constant for the row is negative, the sign for the row
/// will be inverted so the constant becomes positive.
///
/// The tag will be updated with the marker and error symbols to use
/// for tracking the movement of the constraint in the tableau.
fn create_row(&mut self, constraint: &Constraint) -> (Box<Row>, Tag) {
let expr = constraint.expr();
let mut row = Row::new(expr.constant);
// Substitute the current basic variables into the row.
for term in &expr.terms {
if !near_zero(term.coefficient) {
let symbol = self.get_var_symbol(term.variable);
if let Some(other_row) = self.rows.get(&symbol) {
row.insert_row(other_row, term.coefficient);
} else {
row.insert_symbol(symbol, term.coefficient);
}
}
}
let mut objective = self.objective.borrow_mut();
// Add the necessary slack, error, and dummy variables.
let tag = match constraint.op() {
RelationalOperator::GreaterOrEqual |
RelationalOperator::LessOrEqual => {
let coeff = if constraint.op() == RelationalOperator::LessOrEqual {
1.0
} else {
-1.0
};
let slack = Symbol(self.id_tick, SymbolType::Slack);
self.id_tick += 1;
row.insert_symbol(slack, coeff);
if constraint.strength() < ::strength::REQUIRED {
let error = Symbol(self.id_tick, SymbolType::Error);
self.id_tick += 1;
row.insert_symbol(error, -coeff);
objective.insert_symbol(error, constraint.strength());
Tag {
marker: slack,
other: error
}
} else {
Tag {
marker: slack,
other: Symbol::invalid()
}
}
}
RelationalOperator::Equal => {
if constraint.strength() < ::strength::REQUIRED {
let errplus = Symbol(self.id_tick, SymbolType::Error);
self.id_tick += 1;
let errminus = Symbol(self.id_tick, SymbolType::Error);
self.id_tick += 1;
row.insert_symbol(errplus, -1.0); // v = eplus - eminus
row.insert_symbol(errminus, 1.0); // v - eplus + eminus = 0
objective.insert_symbol(errplus, constraint.strength());
objective.insert_symbol(errminus, constraint.strength());
Tag {
marker: errplus,
other: errminus
}
} else {
let dummy = Symbol(self.id_tick, SymbolType::Dummy);
self.id_tick += 1;
row.insert_symbol(dummy, 1.0);
Tag {
marker: dummy,
other: Symbol::invalid()
}
}
}
};
// Ensure the row has a positive constant.
if row.constant < 0.0 {
row.reverse_sign();
}
(Box::new(row), tag)
}
/// Choose the subject for solving for the row.
///
/// This method will choose the best subject for using as the solve
/// target for the row. An invalid symbol will be returned if there
/// is no valid target.
///
/// The symbols are chosen according to the following precedence:
///
/// 1) The first symbol representing an external variable.
/// 2) A negative slack or error tag variable.
///
/// If a subject cannot be found, an invalid symbol will be returned.
fn choose_subject(row: &Row, tag: &Tag) -> Symbol {
for s in row.cells.keys() {
if s.type_() == SymbolType::External {
return *s
}
}
if tag.marker.type_() == SymbolType::Slack || tag.marker.type_() == SymbolType::Error {
if row.coefficient_for(tag.marker) < 0.0 {
return tag.marker;
}
}
if tag.other.type_() == SymbolType::Slack || tag.other.type_() == SymbolType::Error {
if row.coefficient_for(tag.other) < 0.0 {
return tag.other;
}
}
Symbol::invalid()
}
/// Add the row to the tableau using an artificial variable.
///
/// This will return false if the constraint cannot be satisfied.
fn add_with_artificial_variable(&mut self, row: &Row) -> Result<bool, InternalSolverError> {
// Create and add the artificial variable to the tableau
let art = Symbol(self.id_tick, SymbolType::Slack);
self.id_tick += 1;
self.rows.insert(art, Box::new(row.clone()));
self.artificial = Some(Rc::new(RefCell::new(row.clone())));
// Optimize the artificial objective. This is successful
// only if the artificial objective is optimized to zero.
let artificial = self.artificial.as_ref().unwrap().clone();
try!(self.optimise(&artificial));
let success = near_zero(artificial.borrow().constant);
self.artificial = None;
// If the artificial variable is basic, pivot the row so that
// it becomes basic. If the row is constant, exit early.
if let Some(mut row) = self.rows.remove(&art) {
if row.cells.is_empty() {
return Ok(success);
}
let entering = Solver::any_pivotable_symbol(&row); // never External
if entering.type_() == SymbolType::Invalid {
return Ok(false); // unsatisfiable (will this ever happen?)
}
row.solve_for_symbols(art, entering);
self.substitute(entering, &row);
self.rows.insert(entering, row);
}
// Remove the artificial row from the tableau
for (_, row) in &mut self.rows {
row.remove(art);
}
self.objective.borrow_mut().remove(art);
Ok(success)
}
/// Substitute the parametric symbol with the given row.
///
/// This method will substitute all instances of the parametric symbol
/// in the tableau and the objective function with the given row.
fn substitute(&mut self, symbol: Symbol, row: &Row) {
for (&other_symbol, other_row) in &mut self.rows {
let constant_changed = other_row.substitute(symbol, row);
if other_symbol.type_() == SymbolType::External && constant_changed {
let v = self.var_for_symbol[&other_symbol];
// inline var_changed
if self.should_clear_changes {
self.changed.clear();
self.should_clear_changes = false;
}
self.changed.insert(v);
}
if other_symbol.type_() != SymbolType::External && other_row.constant < 0.0 {
self.infeasible_rows.push(other_symbol);
}
}
self.objective.borrow_mut().substitute(symbol, row);
if let Some(artificial) = self.artificial.as_ref() {
artificial.borrow_mut().substitute(symbol, row);
}
}
/// Optimize the system for the given objective function.
///
/// This method performs iterations of Phase 2 of the simplex method
/// until the objective function reaches a minimum.
fn optimise(&mut self, objective: &RefCell<Row>) -> Result<(), InternalSolverError> {
loop {
let entering = Solver::get_entering_symbol(&objective.borrow());
if entering.type_() == SymbolType::Invalid {
return Ok(());
}
let (leaving, mut row) = try!(self.get_leaving_row(entering)
.ok_or(InternalSolverError("The objective is unbounded")));
// pivot the entering symbol into the basis
row.solve_for_symbols(leaving, entering);
self.substitute(entering, &row);
if entering.type_() == SymbolType::External && row.constant != 0.0 {
let v = self.var_for_symbol[&entering];
self.var_changed(v);
}
self.rows.insert(entering, row);
}
}
/// Optimize the system using the dual of the simplex method.
///
/// The current state of the system should be such that the objective
/// function is optimal, but not feasible. This method will perform
/// an iteration of the dual simplex method to make the solution both
/// optimal and feasible.
fn dual_optimise(&mut self) -> Result<(), InternalSolverError> {
while !self.infeasible_rows.is_empty() {
let leaving = self.infeasible_rows.pop().unwrap();
let row = if let Entry::Occupied(entry) = self.rows.entry(leaving) {
if entry.get().constant < 0.0 {
Some(entry.remove())
} else {
None
}
} else {
None
};
if let Some(mut row) = row {
let entering = self.get_dual_entering_symbol(&row);
if entering.type_() == SymbolType::Invalid {
return Err(InternalSolverError("Dual optimise failed."));
}
// pivot the entering symbol into the basis
row.solve_for_symbols(leaving, entering);
self.substitute(entering, &row);
if entering.type_() == SymbolType::External && row.constant != 0.0 {
let v = self.var_for_symbol[&entering];
self.var_changed(v);
}
self.rows.insert(entering, row);
}
}
Ok(())
}
/// Compute the entering variable for a pivot operation.
///
/// This method will return first symbol in the objective function which
/// is non-dummy and has a coefficient less than zero. If no symbol meets
/// the criteria, it means the objective function is at a minimum, and an
/// invalid symbol is returned.
/// Could return an External symbol
fn get_entering_symbol(objective: &Row) -> Symbol {
for (symbol, value) in &objective.cells {
if symbol.type_() != SymbolType::Dummy && *value < 0.0 {
return *symbol;
}
}
Symbol::invalid()
}
/// Compute the entering symbol for the dual optimize operation.
///
/// This method will return the symbol in the row which has a positive
/// coefficient and yields the minimum ratio for its respective symbol
/// in the objective function. The provided row *must* be infeasible.
/// If no symbol is found which meats the criteria, an invalid symbol
/// is returned.
/// Could return an External symbol
fn get_dual_entering_symbol(&self, row: &Row) -> Symbol {
let mut entering = Symbol::invalid();
let mut ratio = ::std::f64::INFINITY;
let objective = self.objective.borrow();
for (symbol, value) in &row.cells {
if *value > 0.0 && symbol.type_() != SymbolType::Dummy {
let coeff = objective.coefficient_for(*symbol);
let r = coeff / *value;
if r < ratio {
ratio = r;
entering = *symbol;
}
}
}
entering
}
/// Get the first Slack or Error symbol in the row.
///
/// If no such symbol is present, and Invalid symbol will be returned.
/// Never returns an External symbol
fn any_pivotable_symbol(row: &Row) -> Symbol {
for symbol in row.cells.keys() {
if symbol.type_() == SymbolType::Slack || symbol.type_() == SymbolType::Error {
return *symbol;
}
}
Symbol::invalid()
}
/// Compute the row which holds the exit symbol for a pivot.
///
/// This method will return an iterator to the row in the row map
/// which holds the exit symbol. If no appropriate exit symbol is
/// found, the end() iterator will be returned. This indicates that
/// the objective function is unbounded.
/// Never returns a row for an External symbol
fn get_leaving_row(&mut self, entering: Symbol) -> Option<(Symbol, Box<Row>)> {
let mut ratio = ::std::f64::INFINITY;
let mut found = None;
for (symbol, row) in &self.rows {
if symbol.type_() != SymbolType::External {
let temp = row.coefficient_for(entering);
if temp < 0.0 {
let temp_ratio = -row.constant / temp;
if temp_ratio < ratio {
ratio = temp_ratio;
found = Some(*symbol);
}
}
}
}
found.map(|s| (s, self.rows.remove(&s).unwrap()))
}
/// Compute the leaving row for a marker variable.
///
/// This method will return an iterator to the row in the row map
/// which holds the given marker variable. The row will be chosen
/// according to the following precedence:
///
/// 1) The row with a restricted basic varible and a negative coefficient
/// for the marker with the smallest ratio of -constant / coefficient.
///
/// 2) The row with a restricted basic variable and the smallest ratio
/// of constant / coefficient.
///
/// 3) The last unrestricted row which contains the marker.
///
/// If the marker does not exist in any row, the row map end() iterator
/// will be returned. This indicates an internal solver error since
/// the marker *should* exist somewhere in the tableau.
fn get_marker_leaving_row(&mut self, marker: Symbol) -> Option<(Symbol, Box<Row>)> {
let mut r1 = ::std::f64::INFINITY;
let mut r2 = r1;
let mut first = None;
let mut second = None;
let mut third = None;
for (symbol, row) in &self.rows {
let c = row.coefficient_for(marker);
if c == 0.0 {
continue;
}
if symbol.type_() == SymbolType::External {
third = Some(*symbol);
} else if c < 0.0 {
let r = -row.constant / c;
if r < r1 {
r1 = r;
first = Some(*symbol);
}
} else {
let r = row.constant / c;
if r < r2 {
r2 = r;
second = Some(*symbol);
}
}
}
first
.or(second)
.or(third)
.and_then(|s| {
if s.type_() == SymbolType::External && self.rows[&s].constant != 0.0 {
let v = self.var_for_symbol[&s];
self.var_changed(v);
}
self.rows
.remove(&s)
.map(|r| (s, r))
})
}
/// Remove the effects of a constraint on the objective function.
fn remove_constraint_effects(&mut self, cn: &Constraint, tag: &Tag) {
if tag.marker.type_() == SymbolType::Error {
self.remove_marker_effects(tag.marker, cn.strength());
} else if tag.other.type_() == SymbolType::Error {
self.remove_marker_effects(tag.other, cn.strength());
}
}
/// Remove the effects of an error marker on the objective function.
fn remove_marker_effects(&mut self, marker: Symbol, strength: f64) {
if let Some(row) = self.rows.get(&marker) {
self.objective.borrow_mut().insert_row(row, -strength);
} else {
self.objective.borrow_mut().insert_symbol(marker, -strength);
}
}
/// Test whether a row is composed of all dummy variables.
fn all_dummies(row: &Row) -> bool {
for symbol in row.cells.keys() {
if symbol.type_() != SymbolType::Dummy {
return false;
}
}
true
}
/// Get the stored value for a variable.
///
/// Normally values should be retrieved and updated using `fetch_changes`, but
/// this method can be used for debugging or testing.
pub fn get_value(&self, v: Variable) -> f64 {
self.var_data.get(&v).and_then(|s| {
self.rows.get(&s.1).map(|r| r.constant)
}).unwrap_or(0.0)
}
}