argmin/solver/quasinewton/
bfgs.rsuse crate::prelude::*;
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize};
use std::fmt::Debug;
#[derive(Clone, Serialize, Deserialize)]
pub struct BFGS<L, H, F> {
inv_hessian: H,
linesearch: L,
tol_grad: F,
tol_cost: F,
}
impl<L, H, F: ArgminFloat> BFGS<L, H, F> {
pub fn new(init_inverse_hessian: H, linesearch: L) -> Self {
BFGS {
inv_hessian: init_inverse_hessian,
linesearch,
tol_grad: F::epsilon().sqrt(),
tol_cost: F::epsilon(),
}
}
pub fn with_tol_grad(mut self, tol_grad: F) -> Self {
self.tol_grad = tol_grad;
self
}
pub fn with_tol_cost(mut self, tol_cost: F) -> Self {
self.tol_cost = tol_cost;
self
}
}
impl<O, L, H, F> Solver<O> for BFGS<L, H, F>
where
O: ArgminOp<Output = F, Hessian = H, Float = F>,
O::Param: Debug
+ Default
+ ArgminSub<O::Param, O::Param>
+ ArgminDot<O::Param, O::Float>
+ ArgminDot<O::Param, O::Hessian>
+ ArgminScaledAdd<O::Param, O::Float, O::Param>
+ ArgminNorm<O::Float>
+ ArgminMul<O::Float, O::Param>,
O::Hessian: Clone
+ Default
+ Debug
+ Serialize
+ DeserializeOwned
+ ArgminSub<O::Hessian, O::Hessian>
+ ArgminDot<O::Param, O::Param>
+ ArgminDot<O::Hessian, O::Hessian>
+ ArgminAdd<O::Hessian, O::Hessian>
+ ArgminMul<O::Float, O::Hessian>
+ ArgminTranspose
+ ArgminEye,
L: Clone + ArgminLineSearch<O::Param, O::Float> + Solver<OpWrapper<O>>,
F: ArgminFloat,
{
const NAME: &'static str = "BFGS";
fn init(
&mut self,
op: &mut OpWrapper<O>,
state: &IterState<O>,
) -> Result<Option<ArgminIterData<O>>, Error> {
let param = state.get_param();
let cost = op.apply(¶m)?;
let grad = op.gradient(¶m)?;
Ok(Some(
ArgminIterData::new().param(param).cost(cost).grad(grad),
))
}
fn next_iter(
&mut self,
op: &mut OpWrapper<O>,
state: &IterState<O>,
) -> Result<ArgminIterData<O>, Error> {
let param = state.get_param();
let cur_cost = state.get_cost();
let prev_grad = state.get_grad().unwrap();
let p = self
.inv_hessian
.dot(&prev_grad)
.mul(&F::from_f64(-1.0).unwrap());
self.linesearch.set_search_direction(p);
let ArgminResult {
operator: line_op,
state:
IterState {
param: xk1,
cost: next_cost,
..
},
} = Executor::new(
OpWrapper::new_from_wrapper(op),
self.linesearch.clone(),
param.clone(),
)
.grad(prev_grad.clone())
.cost(cur_cost)
.ctrlc(false)
.run()?;
op.consume_op(line_op);
let grad = op.gradient(&xk1)?;
let yk = grad.sub(&prev_grad);
let sk = xk1.sub(¶m);
let yksk: F = yk.dot(&sk);
let rhok = F::from_f64(1.0).unwrap() / yksk;
let e = self.inv_hessian.eye_like();
let mat1: O::Hessian = sk.dot(&yk);
let mat1 = mat1.mul(&rhok);
let mat2 = mat1.clone().t();
let tmp1 = e.sub(&mat1);
let tmp2 = e.sub(&mat2);
let sksk: O::Hessian = sk.dot(&sk);
let sksk = sksk.mul(&rhok);
self.inv_hessian = tmp1.dot(&self.inv_hessian.dot(&tmp2)).add(&sksk);
Ok(ArgminIterData::new().param(xk1).cost(next_cost).grad(grad))
}
fn terminate(&mut self, state: &IterState<O>) -> TerminationReason {
if state.get_grad().unwrap().norm() < self.tol_grad {
return TerminationReason::TargetPrecisionReached;
}
if (state.get_prev_cost() - state.get_cost()).abs() < self.tol_cost {
return TerminationReason::NoChangeInCost;
}
TerminationReason::NotTerminated
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::solver::linesearch::MoreThuenteLineSearch;
use crate::test_trait_impl;
type Operator = MinimalNoOperator;
test_trait_impl!(bfgs, BFGS<Operator, MoreThuenteLineSearch<Operator, f64>, f64>);
#[test]
fn test_tolerances() {
let linesearch: MoreThuenteLineSearch<f64, f64> =
MoreThuenteLineSearch::new().c(1e-4, 0.9).unwrap();
let init_hessian: Vec<Vec<f64>> = vec![vec![1.0, 0.0], vec![0.0, 1.0]];
let tol1: f64 = 1e-4;
let tol2: f64 = 1e-2;
let BFGS {
tol_grad: t1,
tol_cost: t2,
..
} = BFGS::new(init_hessian, linesearch)
.with_tol_grad(tol1)
.with_tol_cost(tol2);
assert!((t1 - tol1).abs() < std::f64::EPSILON);
assert!((t2 - tol2).abs() < std::f64::EPSILON);
}
}