argmin/solver/conjugategradient/nonlinear_cg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! Important TODO: Find out which line search should be the default choice. Also try to replicate
//! CG_DESCENT.
//!
//! # References:
//!
//! [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.
use crate::prelude::*;
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize};
use std::default::Default;
/// The nonlinear conjugate gradient is a generalization of the conjugate gradient method for
/// nonlinear optimization problems.
///
/// [Example](https://github.com/argmin-rs/argmin/blob/master/examples/nonlinear_cg.rs)
///
/// # References:
///
/// [0] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Serialize, Deserialize)]
pub struct NonlinearConjugateGradient<P, L, B, F> {
/// p
p: P,
/// beta
beta: F,
/// line search
linesearch: L,
/// beta update method
beta_method: B,
/// Number of iterations after which a restart is performed
restart_iter: u64,
/// Restart based on orthogonality
restart_orthogonality: Option<F>,
}
impl<P, L, B, F> NonlinearConjugateGradient<P, L, B, F>
where
P: Default,
F: ArgminFloat,
{
/// Constructor (Polak Ribiere Conjugate Gradient (PR-CG))
pub fn new(linesearch: L, beta_method: B) -> Result<Self, Error> {
Ok(NonlinearConjugateGradient {
p: P::default(),
beta: F::nan(),
linesearch,
beta_method,
restart_iter: std::u64::MAX,
restart_orthogonality: None,
})
}
/// Specifiy the number of iterations after which a restart should be performed
/// This allows the algorithm to "forget" previous information which may not be helpful
/// anymore.
pub fn restart_iters(mut self, iters: u64) -> Self {
self.restart_iter = iters;
self
}
/// Set the value for the orthogonality measure.
/// Setting this parameter leads to a restart of the algorithm (setting beta = 0) after two
/// consecutive search directions are not orthogonal anymore. In other words, if this condition
/// is met:
///
/// `|\nabla f_k^T * \nabla f_{k-1}| / | \nabla f_k ||^2 >= v`
///
/// A typical value for `v` is 0.1.
pub fn restart_orthogonality(mut self, v: F) -> Self {
self.restart_orthogonality = Some(v);
self
}
}
impl<O, P, L, B, F> Solver<O> for NonlinearConjugateGradient<P, L, B, F>
where
O: ArgminOp<Param = P, Output = F, Float = F>,
P: Clone
+ Default
+ Serialize
+ DeserializeOwned
+ ArgminSub<O::Param, O::Param>
+ ArgminDot<O::Param, O::Float>
+ ArgminScaledAdd<O::Param, O::Float, O::Param>
+ ArgminAdd<O::Param, O::Param>
+ ArgminMul<F, O::Param>
+ ArgminDot<O::Param, O::Float>
+ ArgminNorm<O::Float>,
O::Hessian: Default,
L: Clone + ArgminLineSearch<O::Param, O::Float> + Solver<OpWrapper<O>>,
B: ArgminNLCGBetaUpdate<O::Param, O::Float>,
F: ArgminFloat,
{
const NAME: &'static str = "Nonlinear Conjugate Gradient";
fn init(
&mut self,
op: &mut OpWrapper<O>,
state: &IterState<O>,
) -> Result<Option<ArgminIterData<O>>, Error> {
let param = state.get_param();
let cost = op.apply(¶m)?;
let grad = op.gradient(¶m)?;
self.p = grad.mul(&(F::from_f64(-1.0).unwrap()));
Ok(Some(
ArgminIterData::new().param(param).cost(cost).grad(grad),
))
}
fn next_iter(
&mut self,
op: &mut OpWrapper<O>,
state: &IterState<O>,
) -> Result<ArgminIterData<O>, Error> {
let xk = state.get_param();
let grad = if let Some(grad) = state.get_grad() {
grad
} else {
op.gradient(&xk)?
};
let cur_cost = state.get_cost();
// Linesearch
self.linesearch.set_search_direction(self.p.clone());
// Run solver
let ArgminResult {
operator: line_op,
state: line_state,
} = Executor::new(OpWrapper::new_from_wrapper(op), self.linesearch.clone(), xk)
.grad(grad.clone())
.cost(cur_cost)
.ctrlc(false)
.run()?;
// takes care of the counts of function evaluations
op.consume_op(line_op);
let xk1 = line_state.get_param();
// Update of beta
let new_grad = op.gradient(&xk1)?;
let restart_orthogonality = match self.restart_orthogonality {
Some(v) => new_grad.dot(&grad).abs() / new_grad.norm().powi(2) >= v,
None => false,
};
let restart_iter: bool =
(state.get_iter() % self.restart_iter == 0) && state.get_iter() != 0;
if restart_iter || restart_orthogonality {
self.beta = F::from_f64(0.0).unwrap();
} else {
self.beta = self.beta_method.update(&grad, &new_grad, &self.p);
}
// Update of p
self.p = new_grad
.mul(&(F::from_f64(-1.0).unwrap()))
.add(&self.p.mul(&self.beta));
// Housekeeping
let cost = op.apply(&xk1)?;
Ok(ArgminIterData::new()
.param(xk1)
.cost(cost)
.grad(new_grad)
.kv(make_kv!("beta" => self.beta;
"restart_iter" => restart_iter;
"restart_orthogonality" => restart_orthogonality;
)))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::core::MinimalNoOperator;
use crate::solver::conjugategradient::beta::PolakRibiere;
use crate::solver::linesearch::MoreThuenteLineSearch;
use crate::test_trait_impl;
test_trait_impl!(
nonlinear_cg,
NonlinearConjugateGradient<
MinimalNoOperator,
MoreThuenteLineSearch<MinimalNoOperator, f64>,
PolakRibiere,
f64
>
);
}