argmin/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! A pure Rust optimization framework
//!
//! This crate offers a (work in progress) numerical optimization toolbox/framework written entirely
//! in Rust. It is at the moment potentially very buggy. Please use with care and report any bugs
//! you encounter. This crate is looking for contributors!
//!
//! [Documentation of most recent release](https://docs.rs/argmin/latest/argmin/)
//!
//! [Documentation of master](https://argmin-rs.github.io/argmin/argmin/)
//!
//! # Design goals
//!
//! This crate's intention is to be useful to users as well as developers of optimization
//! algorithms, meaning that it should be both easy to apply and easy to implement algorithms. In
//! particular, as a developer of optimization algorithms you should not need to worry about
//! usability features (such as logging, dealing with different types, setters and getters for
//! certain common parameters, counting cost function and gradient evaluations, termination, and so
//! on). Instead you can focus on implementing your algorithm.
//!
//! - Easy framework for the implementation of optimization algorithms: Implement a single iteration
//! of your method and let the framework do the rest. This leads to similar interfaces for
//! different solvers, making it easy for users.
//! - Pure Rust implementations of a wide range of optimization methods: This avoids the need to
//! compile and interface C/C++/Fortran code.
//! - Type-agnostic: Many problems require data structures that go beyond simple vectors to
//! represent the parameters. In argmin, everything is generic: All that needs to be done is
//! implementing certain traits on your data type. For common types, these traits are already
//! implemented.
//! - Convenient: Easy and consistent logging of anything that may be important. Log to the
//! terminal, to a file or implement your own observers. Future plans include sending metrics to
//! databases and connecting to big data piplines.
//! - Algorithm evaluation: Methods to assess the performance of an algorithm for different
//! parameter settings, problem classes, ...
//!
//! Since this crate is in a very early stage, so far most points are only partially implemented or
//! remain future plans.
//!
//! # Algorithms
//!
//! - [Line searches](solver/linesearch/index.html)
//! - [Backtracking line search](solver/linesearch/backtracking/struct.BacktrackingLineSearch.html)
//! - [More-Thuente line search](solver/linesearch/morethuente/struct.MoreThuenteLineSearch.html)
//! - [Hager-Zhang line search](solver/linesearch/hagerzhang/struct.HagerZhangLineSearch.html)
//! - [Trust region method](solver/trustregion/trustregion_method/struct.TrustRegion.html)
//! - [Cauchy point method](solver/trustregion/cauchypoint/struct.CauchyPoint.html)
//! - [Dogleg method](solver/trustregion/dogleg/struct.Dogleg.html)
//! - [Steihaug method](solver/trustregion/steihaug/struct.Steihaug.html)
//! - [Steepest descent](solver/gradientdescent/steepestdescent/struct.SteepestDescent.html)
//! - [Conjugate gradient method](solver/conjugategradient/cg/struct.ConjugateGradient.html)
//! - [Nonlinear conjugate gradient method](solver/conjugategradient/nonlinear_cg/struct.NonlinearConjugateGradient.html)
//! - [Newton methods](solver/newton/index.html)
//! - [Newton's method](solver/newton/newton_method/struct.Newton.html)
//! - [Newton-CG](solver/newton/newton_cg/struct.NewtonCG.html)
//! - [Quasi-Newton methods](solver/quasinewton/index.html)
//! - [BFGS](solver/quasinewton/bfgs/struct.BFGS.html)
//! - [L-BFGS](solver/quasinewton/lbfgs/struct.LBFGS.html)
//! - [DFP](solver/quasinewton/dfp/struct.DFP.html)
//! - [SR1](solver/quasinewton/sr1/struct.SR1.html)
//! - [SR1-TrustRegion](solver/quasinewton/sr1_trustregion/struct.SR1TrustRegion.html)
//! - [Gauss-Newton method](solver/gaussnewton/gaussnewton/struct.GaussNewton.html)
//! - [Gauss-Newton method with linesearch](solver/gaussnewton/gaussnewton_linesearch/struct.GaussNewtonLS.html)
//! - [Golden-section search](solver/goldensectionsearch/struct.GoldenSectionSearch.html)
//! - [Landweber iteration](solver/landweber/struct.Landweber.html)
//! - [Brent's method](solver/brent/struct.Brent.html)
//! - [Nelder-Mead method](solver/neldermead/struct.NelderMead.html)
//! - [Simulated Annealing](solver/simulatedannealing/struct.SimulatedAnnealing.html)
//! - [Particle Swarm Optimization](solver/particleswarm/struct.ParticleSwarm.html)
//!
//! # Usage
//!
//! Add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! argmin = "0.3.1"
//! ```
//!
//! ## Optional features (recommended)
//!
//! There are additional features which can be activated in `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! argmin = { version = "0.3.1", features = ["ctrlc", "ndarrayl"] }
//! ```
//!
//! These may become default features in the future. Without these features compilation to
//! `wasm32-unknown-unkown` seems to be possible.
//!
//! - `ctrlc`: Uses the `ctrlc` crate to properly stop the optimization (and return the current best
//! result) after pressing Ctrl+C.
//! - `ndarrayl`: Support for `ndarray`, `ndarray-linalg` and `ndarray-rand`.
//!
//! ## Running the tests
//!
//! Running the tests requires the `ndarrayl` feature to be enabled:
//!
//! ```bash
//! cargo test --features "ndarrayl"
//! ```
//!
//! # Defining a problem
//!
//! A problem can be defined by implementing the `ArgminOp` trait which comes with the
//! associated types `Param`, `Output` and `Hessian`. `Param` is the type of your
//! parameter vector (i.e. the input to your cost function), `Output` is the type returned
//! by the cost function, `Hessian` is the type of the Hessian and `Jacobian` is the type of the
//! Jacobian.
//! The trait provides the following methods:
//!
//! - `apply(&self, p: &Self::Param) -> Result<Self::Output, Error>`: Applys the cost
//! function to parameters `p` of type `Self::Param` and returns the cost function value.
//! - `gradient(&self, p: &Self::Param) -> Result<Self::Param, Error>`: Computes the
//! gradient at `p`.
//! - `hessian(&self, p: &Self::Param) -> Result<Self::Hessian, Error>`: Computes the Hessian
//! at `p`.
//! - `jacobian(&self, p: &Self::Param) -> Result<Self::Jacobian, Error>`: Computes the Jacobian
//! at `p`.
//!
//! The following code snippet shows an example of how to use the Rosenbrock test functions from
//! `argmin-testfunctions` in argmin:
//!
//! ```rust
//! # extern crate argmin;
//! # extern crate argmin_testfunctions;
//! # extern crate ndarray;
//! use argmin_testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative, rosenbrock_2d_hessian};
//! use argmin::prelude::*;
//!
//! /// First, create a struct for your problem
//! struct Rosenbrock {
//! a: f64,
//! b: f64,
//! }
//!
//! /// Implement `ArgminOp` for `Rosenbrock`
//! impl ArgminOp for Rosenbrock {
//! /// Type of the parameter vector
//! type Param = Vec<f64>;
//! /// Type of the return value computed by the cost function
//! type Output = f64;
//! /// Type of the Hessian. Can be `()` if not needed.
//! type Hessian = Vec<Vec<f64>>;
//! /// Type of the Jacobian. Can be `()` if not needed.
//! type Jacobian = ();
//! /// Floating point precision
//! type Float = f64;
//!
//! /// Apply the cost function to a parameter `p`
//! fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//! Ok(rosenbrock_2d(p, self.a, self.b))
//! }
//!
//! /// Compute the gradient at parameter `p`.
//! fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//! Ok(rosenbrock_2d_derivative(p, self.a, self.b))
//! }
//!
//! /// Compute the Hessian at parameter `p`.
//! fn hessian(&self, p: &Self::Param) -> Result<Self::Hessian, Error> {
//! let t = rosenbrock_2d_hessian(p, self.a, self.b);
//! Ok(vec![vec![t[0], t[1]], vec![t[2], t[3]]])
//! }
//! }
//! ```
//!
//! It is optional to implement any of these methods, as there are default implementations which
//! will return an `Err` when called. What needs to be implemented is defined by the requirements
//! of the solver that is to be used.
//!
//! # Running a solver
//!
//! The following example shows how to use the previously shown definition of a problem in a
//! Steepest Descent (Gradient Descent) solver.
//!
//! ```rust
//! # #![allow(unused_imports)]
//! # extern crate argmin;
//! # extern crate argmin_testfunctions;
//! use argmin::prelude::*;
//! use argmin::solver::gradientdescent::SteepestDescent;
//! use argmin::solver::linesearch::MoreThuenteLineSearch;
//! # use argmin_testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
//! #
//! # struct Rosenbrock {
//! # a: f64,
//! # b: f64,
//! # }
//! #
//! # impl ArgminOp for Rosenbrock {
//! # type Param = Vec<f64>;
//! # type Output = f64;
//! # type Hessian = ();
//! # type Jacobian = ();
//! # type Float = f64;
//! #
//! # fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//! # Ok(rosenbrock_2d(p, self.a, self.b))
//! # }
//! #
//! # fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//! # Ok(rosenbrock_2d_derivative(p, self.a, self.b))
//! # }
//! # }
//! #
//! # fn run() -> Result<(), Error> {
//!
//! // Define cost function (must implement `ArgminOperator`)
//! let cost = Rosenbrock { a: 1.0, b: 100.0 };
//!
//! // Define initial parameter vector
//! let init_param: Vec<f64> = vec![-1.2, 1.0];
//!
//! // Set up line search
//! let linesearch = MoreThuenteLineSearch::new();
//!
//! // Set up solver
//! let solver = SteepestDescent::new(linesearch);
//!
//! // Run solver
//! let res = Executor::new(cost, solver, init_param)
//! // Add an observer which will log all iterations to the terminal
//! .add_observer(ArgminSlogLogger::term(), ObserverMode::Always)
//! // Set maximum iterations to 10
//! .max_iters(10)
//! // run the solver on the defined problem
//! .run()?;
//! #
//! # // Wait a second (lets the logger flush everything first)
//! # std::thread::sleep(std::time::Duration::from_secs(1));
//!
//! // print result
//! println!("{}", res);
//! # Ok(())
//! # }
//! #
//! # fn main() {
//! # if let Err(ref e) = run() {
//! # println!("{}", e);
//! # std::process::exit(1);
//! # }
//! # }
//! ```
//!
//! # Observing iterations
//!
//! Argmin offers an interface to observe the state of the iteration at initialization as well as
//! after every iteration. This includes the parameter vector, gradient, Hessian, iteration number,
//! cost values and many more as well as solver-specific metrics. This interface can be used to
//! implement loggers, send the information to a storage or to plot metrics.
//! Observers need to implment the `Observe` trait.
//! Argmin ships with a logger based on the `slog` crate. `ArgminSlogLogger::term` logs to the
//! terminal and `ArgminSlogLogger::file` logs to a file in JSON format. Both loggers also come
//! with a `*_noblock` version which does not block the execution of logging, but may drop some
//! messages if the buffer is full.
//! Parameter vectors can be written to disc using `WriteToFile`.
//! For each observer it can be defined how often it will observe the progress of the solver. This
//! is indicated via the enum `ObserverMode` which can be either `Always`, `Never`, `NewBest`
//! (whenever a new best solution is found) or `Every(i)` which means every `i`th iteration.
//!
//! ```rust
//! # #![allow(unused_imports)]
//! # extern crate argmin;
//! # extern crate argmin_testfunctions;
//! # use argmin::prelude::*;
//! # use argmin::solver::gradientdescent::SteepestDescent;
//! # use argmin::solver::linesearch::MoreThuenteLineSearch;
//! # use argmin_testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
//! #
//! # struct Rosenbrock {
//! # a: f64,
//! # b: f64,
//! # }
//! #
//! # impl ArgminOp for Rosenbrock {
//! # type Param = Vec<f64>;
//! # type Output = f64;
//! # type Hessian = ();
//! # type Jacobian = ();
//! # type Float = f64;
//! #
//! # fn apply(&self, p: &Self::Param) -> Result<Self::Output, Error> {
//! # Ok(rosenbrock_2d(p, self.a, self.b))
//! # }
//! #
//! # fn gradient(&self, p: &Self::Param) -> Result<Self::Param, Error> {
//! # Ok(rosenbrock_2d_derivative(p, self.a, self.b))
//! # }
//! # }
//! #
//! # fn run() -> Result<(), Error> {
//! #
//! # // Define cost function (must implement `ArgminOperator`)
//! # let problem = Rosenbrock { a: 1.0, b: 100.0 };
//! #
//! # // Define initial parameter vector
//! # let init_param: Vec<f64> = vec![-1.2, 1.0];
//! #
//! # // Set up line search
//! # let linesearch = MoreThuenteLineSearch::new();
//! #
//! # // Set up solver
//! # let solver = SteepestDescent::new(linesearch);
//! #
//! let res = Executor::new(problem, solver, init_param)
//! // Add an observer which will log all iterations to the terminal (without blocking)
//! .add_observer(ArgminSlogLogger::term_noblock(), ObserverMode::Always)
//! // Log to file whenever a new best solution is found
//! .add_observer(ArgminSlogLogger::file("solver.log", false)?, ObserverMode::NewBest)
//! // Write parameter vector to `params/param.arg` every 20th iteration
//! .add_observer(WriteToFile::new("params", "param"), ObserverMode::Every(20))
//! # .max_iters(2)
//! // run the solver on the defined problem
//! .run()?;
//! # Ok(())
//! # }
//! #
//! # fn main() {
//! # if let Err(ref e) = run() {
//! # println!("{}", e);
//! # std::process::exit(1);
//! # }
//! # }
//! ```
//!
//! # Checkpoints
//!
//! The probability of crashes increases with runtime, therefore one may want to save checkpoints
//! in order to be able to resume the optimization after a crash.
//! The `CheckpointMode` defines how often checkpoints are saved and is either `Never` (default),
//! `Always` (every iteration) or `Every(u64)` (every Nth iteration). It is set via the setter
//! method `checkpoint_mode` of `Executor`.
//! In addition, the directory where the checkpoints and a prefix for every file can be set via
//! `checkpoint_dir` and `checkpoint_name`, respectively.
//!
//! The following example shows how the `from_checkpoint` method can be used to resume from a
//! checkpoint. In case this fails (for instance because the file does not exist, which could mean
//! that this is the first run and there is nothing to resume from), it will resort to creating a
//! new `Executor`, thus starting from scratch.
//!
//! ```rust
//! # extern crate argmin;
//! # extern crate argmin_testfunctions;
//! # use argmin::prelude::*;
//! # use argmin::solver::landweber::*;
//! # use argmin_testfunctions::{rosenbrock_2d, rosenbrock_2d_derivative};
//! # use argmin::core::Error;
//! #
//! # #[derive(Default)]
//! # struct Rosenbrock {}
//! #
//! # impl ArgminOp for Rosenbrock {
//! # type Param = Vec<f64>;
//! # type Output = f64;
//! # type Hessian = ();
//! # type Jacobian = ();
//! # type Float = f64;
//! #
//! # fn apply(&self, p: &Vec<f64>) -> Result<f64, Error> {
//! # Ok(rosenbrock_2d(p, 1.0, 100.0))
//! # }
//! #
//! # fn gradient(&self, p: &Vec<f64>) -> Result<Vec<f64>, Error> {
//! # Ok(rosenbrock_2d_derivative(p, 1.0, 100.0))
//! # }
//! # }
//! #
//! # fn run() -> Result<(), Error> {
//! # // define inital parameter vector
//! # let init_param: Vec<f64> = vec![1.2, 1.2];
//! #
//! # let iters = 35;
//! # let solver = Landweber::new(0.001);
//! #
//! let res = Executor::from_checkpoint(".checkpoints/optim.arg", Rosenbrock {})
//! .unwrap_or(Executor::new(Rosenbrock {}, solver, init_param))
//! .max_iters(iters)
//! .checkpoint_dir(".checkpoints")
//! .checkpoint_name("optim")
//! .checkpoint_mode(CheckpointMode::Every(20))
//! .run()?;
//! #
//! # // Wait a second (lets the logger flush everything before printing to screen again)
//! # std::thread::sleep(std::time::Duration::from_secs(1));
//! # println!("{}", res);
//! # Ok(())
//! # }
//! #
//! # fn main() {
//! # if let Err(ref e) = run() {
//! # println!("{}", e);
//! # }
//! # }
//! ```
//!
//! # Implementing an optimization algorithm
//!
//! In this section we are going to implement the Landweber solver, which essentially is a special
//! form of gradient descent. In iteration `k`, the new parameter vector `x_{k+1}` is calculated
//! from the previous parameter vector `x_k` and the gradient at `x_k` according to the following
//! update rule:
//!
//! `x_{k+1} = x_k - omega * \nabla f(x_k)`
//!
//! In order to implement this using the argmin framework, one first needs to define a struct which
//! holds data specific to the solver. Then, the `Solver` trait needs to be implemented for the
//! struct. This requires setting the associated constant `NAME` which gives your solver a name.
//! The `next_iter` method defines the computations performed in a single iteration of the solver.
//! Via the parameters `op` and `state` one has access to the operator (cost function, gradient
//! computation, Hessian, ...) and to the current state of the optimization (parameter vectors,
//! cost function values, iteration number, ...), respectively.
//!
//! ```rust
//! use argmin::prelude::*;
//! use serde::{Deserialize, Serialize};
//!
//! // Define a struct which holds any parameters/data which are needed during the execution of the
//! // solver. Note that this does not include parameter vectors, gradients, Hessians, cost
//! // function values and so on, as those will be handled by the `Executor`.
//! #[derive(Serialize, Deserialize)]
//! pub struct Landweber<F> {
//! /// omega
//! omega: F,
//! }
//!
//! impl<F> Landweber<F> {
//! /// Constructor
//! pub fn new(omega: F) -> Self {
//! Landweber { omega }
//! }
//! }
//!
//! impl<O, F> Solver<O> for Landweber<F>
//! where
//! // `O` always needs to implement `ArgminOp`
//! O: ArgminOp<Float = F>,
//! // `O::Param` needs to implement `ArgminScaledSub` because of the update formula
//! O::Param: ArgminScaledSub<O::Param, O::Float, O::Param>,
//! F: ArgminFloat,
//! {
//! // This gives the solver a name which will be used for logging
//! const NAME: &'static str = "Landweber";
//!
//! // Defines the computations performed in a single iteration.
//! fn next_iter(
//! &mut self,
//! // This gives access to the operator supplied to the `Executor`. `O` implements
//! // `ArgminOp` and `OpWrapper` takes care of counting the calls to the respective
//! // functions.
//! op: &mut OpWrapper<O>,
//! // Current state of the optimization. This gives access to the parameter vector,
//! // gradient, Hessian and cost function value of the current, previous and best
//! // iteration as well as current iteration number, and many more.
//! state: &IterState<O>,
//! ) -> Result<ArgminIterData<O>, Error> {
//! // First we obtain the current parameter vector from the `state` struct (`x_k`).
//! let xk = state.get_param();
//! // Then we compute the gradient at `x_k` (`\nabla f(x_k)`)
//! let grad = op.gradient(&xk)?;
//! // Now subtract `\nabla f(x_k)` scaled by `omega` from `x_k` to compute `x_{k+1}`
//! let xkp1 = xk.scaled_sub(&self.omega, &grad);
//! // Return new paramter vector which will then be used by the `Executor` to update
//! // `state`.
//! Ok(ArgminIterData::new().param(xkp1))
//! }
//! }
//! ```
//!
//! # TODOs
//!
//! * More optimization methods
//! * Automatic differentiation
//! * Parallelization
//! * Tests
//! * Evaluation on real problems
//! * Evaluation framework
//! * Documentation & Tutorials
//! * C interface
//! * Python wrapper
//! * Solver and problem definition via a config file
//!
//! Please open an [issue](https://github.com/argmin-rs/argmin/issues) if you want to contribute!
//! Any help is appreciated!
//!
//! # License
//!
//! Licensed under either of
//!
//! * Apache License, Version 2.0,
//! ([LICENSE-APACHE](https://github.com/argmin-rs/argmin/blob/master/LICENSE-APACHE) or
//! http://www.apache.org/licenses/LICENSE-2.0)
//! * MIT License ([LICENSE-MIT](https://github.com/argmin-rs/argmin/blob/master/LICENSE-MIT) or
//! http://opensource.org/licenses/MIT)
//!
//! at your option.
//!
//!
//! ## Contribution
//!
//! Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion
//! in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above,
//! without any additional terms or conditions.
#![warn(missing_docs)]
#![allow(unused_attributes)]
// Explicitly disallow EQ comparison of floats. (This clippy lint is denied by default; however,
// this is just to make sure that it will always stay this way.)
#![deny(clippy::float_cmp)]
extern crate rand;
/// Core functionality
#[macro_use]
pub mod core;
/// Definition of all relevant traits and types
pub mod prelude;
/// Solvers
pub mod solver;
/// Macros
#[macro_use]
mod macros;
#[cfg(test)]
mod tests;