argmin/core/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Copyright 2018-2020-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! Argmin Optimizaton toolbox core
//!
//! This crate contains the core functionality of argmin. If you just want to run an optimization
//! method, this is *not* what you are looking for. However, if you want to implement your own
//! solver based on the argmin architecture, you should find all necessary tools here.
// I really do not like the a..=b syntax
#![allow(clippy::range_plus_one)]
/// Macros
#[macro_use]
pub mod macros;
/// Error handling
mod errors;
/// Executor
pub mod executor;
/// iteration state
mod iterstate;
/// Key value datastructure
mod kv;
/// Math utilities
mod math;
/// Phony Operator
// #[cfg(test)]
mod nooperator;
/// Observers;
mod observers;
/// Wrapper around operators which keeps track of function evaluation counts
mod opwrapper;
/// Definition of the return type of the solvers
mod result;
/// Serialization of `ArgminSolver`s
mod serialization;
/// Definition of termination reasons
mod termination;
pub use anyhow::Error;
pub use errors::*;
pub use executor::*;
pub use iterstate::*;
pub use kv::ArgminKV;
pub use math::*;
pub use nooperator::*;
use num::traits::{Float, FloatConst, FromPrimitive, ToPrimitive};
pub use observers::*;
pub use opwrapper::*;
pub use result::ArgminResult;
use serde::de::DeserializeOwned;
use serde::Serialize;
pub use serialization::*;
use std::fmt::{Debug, Display};
pub use termination::TerminationReason;
/// Trait alias to simplify common trait bounds
pub trait ArgminFloat:
Float + FloatConst + FromPrimitive + ToPrimitive + Debug + Display + Serialize + DeserializeOwned
{
}
impl<I> ArgminFloat for I where
I: Float
+ FloatConst
+ FromPrimitive
+ ToPrimitive
+ Debug
+ Display
+ Serialize
+ DeserializeOwned
{
}
/// This trait needs to be implemented for every operator/cost function.
///
/// It is required to implement the `apply` method, all others are optional and provide a default
/// implementation which is essentially returning an error which indicates that the method has not
/// been implemented. Those methods (`gradient` and `modify`) only need to be implemented if the
/// uses solver requires it.
pub trait ArgminOp {
// TODO: Once associated type defaults are stable, it hopefully will be possible to define
// default types for `Hessian` and `Jacobian`.
/// Type of the parameter vector
type Param: Clone + Serialize + DeserializeOwned;
/// Output of the operator
type Output: Clone + Serialize + DeserializeOwned;
/// Type of Hessian
type Hessian: Clone + Serialize + DeserializeOwned;
/// Type of Jacobian
type Jacobian: Clone + Serialize + DeserializeOwned;
/// Precision of floats
type Float: ArgminFloat;
/// Applies the operator/cost function to parameters
fn apply(&self, _param: &Self::Param) -> Result<Self::Output, Error> {
Err(ArgminError::NotImplemented {
text: "Method `apply` of ArgminOp trait not implemented!".to_string(),
}
.into())
}
/// Computes the gradient at the given parameters
fn gradient(&self, _param: &Self::Param) -> Result<Self::Param, Error> {
Err(ArgminError::NotImplemented {
text: "Method `gradient` of ArgminOp trait not implemented!".to_string(),
}
.into())
}
/// Computes the Hessian at the given parameters
fn hessian(&self, _param: &Self::Param) -> Result<Self::Hessian, Error> {
Err(ArgminError::NotImplemented {
text: "Method `hessian` of ArgminOp trait not implemented!".to_string(),
}
.into())
}
/// Computes the Hessian at the given parameters
fn jacobian(&self, _param: &Self::Param) -> Result<Self::Jacobian, Error> {
Err(ArgminError::NotImplemented {
text: "Method `jacobian` of ArgminOp trait not implemented!".to_string(),
}
.into())
}
/// Modifies a parameter vector. Comes with a variable that indicates the "degree" of the
/// modification.
fn modify(&self, _param: &Self::Param, _extent: Self::Float) -> Result<Self::Param, Error> {
Err(ArgminError::NotImplemented {
text: "Method `modify` of ArgminOp trait not implemented!".to_string(),
}
.into())
}
}
/// Solver
///
/// Every solver needs to implement this trait.
pub trait Solver<O: ArgminOp>: Serialize {
/// Name of the solver
const NAME: &'static str = "UNDEFINED";
/// Computes one iteration of the algorithm.
fn next_iter(
&mut self,
op: &mut OpWrapper<O>,
state: &IterState<O>,
) -> Result<ArgminIterData<O>, Error>;
/// Initializes the algorithm
///
/// This is executed before any iterations are performed. It can be used to perform
/// precomputations. The default implementation corresponds to doing nothing.
fn init(
&mut self,
_op: &mut OpWrapper<O>,
_state: &IterState<O>,
) -> Result<Option<ArgminIterData<O>>, Error> {
Ok(None)
}
/// Checks whether basic termination reasons apply.
///
/// Terminate if
///
/// 1) algorithm was terminated somewhere else in the Executor
/// 2) iteration count exceeds maximum number of iterations
/// 3) cost is lower than target cost
///
/// This can be overwritten in a `Solver` implementation; however it is not advised.
fn terminate_internal(&mut self, state: &IterState<O>) -> TerminationReason {
let solver_terminate = self.terminate(state);
if solver_terminate.terminated() {
return solver_terminate;
}
if state.get_iter() >= state.get_max_iters() {
return TerminationReason::MaxItersReached;
}
if state.get_cost() <= state.get_target_cost() {
return TerminationReason::TargetCostReached;
}
TerminationReason::NotTerminated
}
/// Checks whether the algorithm must be terminated
fn terminate(&mut self, _state: &IterState<O>) -> TerminationReason {
TerminationReason::NotTerminated
}
}
/// The datastructure which is returned by the `next_iter` method of the `Solver` trait.
///
/// TODO: Rename to IterResult?
#[derive(Clone, Debug, Default)]
pub struct ArgminIterData<O: ArgminOp> {
/// Current parameter vector
param: Option<O::Param>,
/// Current cost function value
cost: Option<O::Float>,
/// Current gradient
grad: Option<O::Param>,
/// Current Hessian
hessian: Option<O::Hessian>,
/// Current Jacobian
jacobian: Option<O::Jacobian>,
/// Current population
population: Option<Vec<(O::Param, O::Float)>>,
/// terminationreason
termination_reason: Option<TerminationReason>,
/// Key value pairs which are used to provide additional information for the Observers
kv: ArgminKV,
}
// TODO: Many clones are necessary in the getters.. maybe a complete "deconstruct" method would be
// better?
impl<O: ArgminOp> ArgminIterData<O> {
/// Constructor
pub fn new() -> Self {
ArgminIterData {
param: None,
cost: None,
grad: None,
hessian: None,
jacobian: None,
termination_reason: None,
population: None,
kv: make_kv!(),
}
}
/// Set parameter vector
pub fn param(mut self, param: O::Param) -> Self {
self.param = Some(param);
self
}
/// Set cost function value
pub fn cost(mut self, cost: O::Float) -> Self {
self.cost = Some(cost);
self
}
/// Set gradient
pub fn grad(mut self, grad: O::Param) -> Self {
self.grad = Some(grad);
self
}
/// Set Hessian
pub fn hessian(mut self, hessian: O::Hessian) -> Self {
self.hessian = Some(hessian);
self
}
/// Set Jacobian
pub fn jacobian(mut self, jacobian: O::Jacobian) -> Self {
self.jacobian = Some(jacobian);
self
}
/// Set Population
pub fn population(mut self, population: Vec<(O::Param, O::Float)>) -> Self {
self.population = Some(population);
self
}
/// Adds an `ArgminKV`
pub fn kv(mut self, kv: ArgminKV) -> Self {
self.kv = kv;
self
}
/// Set termination reason
pub fn termination_reason(mut self, reason: TerminationReason) -> Self {
self.termination_reason = Some(reason);
self
}
/// Get parameter vector
pub fn get_param(&self) -> Option<O::Param> {
self.param.clone()
}
/// Get cost function value
pub fn get_cost(&self) -> Option<O::Float> {
self.cost
}
/// Get gradient
pub fn get_grad(&self) -> Option<O::Param> {
self.grad.clone()
}
/// Get Hessian
pub fn get_hessian(&self) -> Option<O::Hessian> {
self.hessian.clone()
}
/// Get Jacobian
pub fn get_jacobian(&self) -> Option<O::Jacobian> {
self.jacobian.clone()
}
/// Get reference to population
pub fn get_population(&self) -> Option<&Vec<(O::Param, O::Float)>> {
match &self.population {
Some(population) => Some(&population),
None => None,
}
}
/// Get termination reason
pub fn get_termination_reason(&self) -> Option<TerminationReason> {
self.termination_reason
}
/// Return KV
pub fn get_kv(&self) -> ArgminKV {
self.kv.clone()
}
}
/// Defines a common interface for line search methods.
pub trait ArgminLineSearch<P, F>: Serialize {
/// Set the search direction
fn set_search_direction(&mut self, direction: P);
/// Set the initial step length
fn set_init_alpha(&mut self, step_length: F) -> Result<(), Error>;
}
/// Defines a common interface to methods which calculate approximate steps for trust region
/// methods.
pub trait ArgminTrustRegion<F>: Clone + Serialize {
/// Set the initial step length
fn set_radius(&mut self, radius: F);
}
//
/// Common interface for beta update methods (Nonlinear-CG)
pub trait ArgminNLCGBetaUpdate<T, F: ArgminFloat>: Serialize {
/// Update beta
/// Parameter 1: \nabla f_k
/// Parameter 2: \nabla f_{k+1}
/// Parameter 3: p_k
fn update(&self, nabla_f_k: &T, nabla_f_k_p_1: &T, p_k: &T) -> F;
}