argmin/core/executor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
// TODO: Logging of "initial info"
use crate::core::serialization::*;
use crate::core::{
ArgminCheckpoint, ArgminIterData, ArgminKV, ArgminOp, ArgminResult, Error, IterState, Observe,
Observer, ObserverMode, OpWrapper, Solver, TerminationReason,
};
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
/// Executes a solver
#[derive(Clone, Serialize, Deserialize)]
pub struct Executor<O: ArgminOp, S> {
/// solver
solver: S,
/// operator
#[serde(skip)]
pub op: OpWrapper<O>,
/// State
#[serde(bound = "IterState<O>: Serialize")]
state: IterState<O>,
/// Storage for observers
#[serde(skip)]
observers: Observer<O>,
/// Checkpoint
checkpoint: ArgminCheckpoint,
/// Indicates whether Ctrl-C functionality should be active or not
ctrlc: bool,
}
impl<O, S> Executor<O, S>
where
O: ArgminOp,
S: Solver<O>,
{
/// Create a new executor with a `solver` and an initial parameter `init_param`
pub fn new(op: O, solver: S, init_param: O::Param) -> Self {
let state = IterState::new(init_param);
Executor {
solver,
op: OpWrapper::new(op),
state,
observers: Observer::new(),
checkpoint: ArgminCheckpoint::default(),
ctrlc: true,
}
}
/// Create a new executor from a checkpoint
pub fn from_checkpoint<P: AsRef<Path>>(path: P, op: O) -> Result<Self, Error>
where
Self: Sized + DeserializeOwned,
{
let mut executor: Self = load_checkpoint(path)?;
executor.op = OpWrapper::new(op);
Ok(executor)
// load_checkpoint(path)
}
fn update(&mut self, data: &ArgminIterData<O>) -> Result<(), Error> {
if let Some(cur_param) = data.get_param() {
self.state.param(cur_param);
}
if let Some(cur_cost) = data.get_cost() {
self.state.cost(cur_cost);
}
// check if parameters are the best so far
if self.state.get_cost() <= self.state.get_best_cost() {
let param = self.state.get_param().clone();
let cost = self.state.get_cost();
self.state.best_param(param).best_cost(cost);
self.state.new_best();
}
if let Some(grad) = data.get_grad() {
self.state.grad(grad);
}
if let Some(hessian) = data.get_hessian() {
self.state.hessian(hessian);
}
if let Some(jacobian) = data.get_jacobian() {
self.state.jacobian(jacobian);
}
if let Some(population) = data.get_population() {
self.state.population(population.clone());
}
if let Some(termination_reason) = data.get_termination_reason() {
self.state.termination_reason(termination_reason);
}
Ok(())
}
/// Run the executor
pub fn run(mut self) -> Result<ArgminResult<O>, Error> {
let total_time = std::time::Instant::now();
let running = Arc::new(AtomicBool::new(true));
if self.ctrlc {
#[cfg(feature = "ctrlc")]
{
// Set up the Ctrl-C handler
let r = running.clone();
// This is currently a hack to allow checkpoints to be run again within the
// same program (usually not really a usecase anyway). Unfortunately, this
// means that any subsequent run started afterwards will have not Ctrl-C
// handling available... This should also be a problem in case one tries to run
// two consecutive optimizations. There is ongoing work in the ctrlc crate
// (channels and such) which may solve this problem. So far, we have to live
// with this.
match ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
}) {
Err(ctrlc::Error::MultipleHandlers) => Ok(()),
r => r,
}?;
}
}
// let mut op_wrapper = OpWrapper::new(&self.op);
let init_data = self.solver.init(&mut self.op, &self.state)?;
let mut logs = make_kv!("max_iters" => self.state.get_max_iters(););
// If init() returned something, deal with it
if let Some(data) = init_data {
self.update(&data)?;
logs = logs.merge(&mut data.get_kv());
}
// Observe after init
self.observers.observe_init(S::NAME, &logs)?;
self.state.set_func_counts(&self.op);
while running.load(Ordering::SeqCst) {
// check first if it has already terminated
// This should probably be solved better.
// First, check if it isn't already terminated. If it isn't, evaluate the
// stopping criteria. If `self.terminate()` is called without the checking
// whether it has terminated already, then it may overwrite a termination set
// within `next_iter()`!
if !self.state.terminated() {
self.state
.termination_reason(self.solver.terminate_internal(&self.state));
}
// Now check once more if the algorithm has terminated. If yes, then break.
if self.state.terminated() {
break;
}
// Start time measurement
let start = std::time::Instant::now();
let data = self.solver.next_iter(&mut self.op, &self.state)?;
self.state.set_func_counts(&self.op);
// End time measurement
let duration = start.elapsed();
self.update(&data)?;
let log = data.get_kv().merge(&mut make_kv!(
"time" => duration.as_secs() as f64 + f64::from(duration.subsec_nanos()) * 1e-9;
));
self.observers.observe_iter(&self.state, &log)?;
// increment iteration number
self.state.increment_iter();
self.checkpoint.store_cond(&self, self.state.get_iter())?;
self.state.time(total_time.elapsed());
// Check if termination occured inside next_iter()
if self.state.terminated() {
break;
}
}
// in case it stopped prematurely and `termination_reason` is still `NotTerminated`,
// someone must have pulled the handbrake
if self.state.get_iter() < self.state.get_max_iters() && !self.state.terminated() {
self.state.termination_reason(TerminationReason::Aborted);
}
Ok(ArgminResult::new(self.op.get_op(), self.state))
}
/// Attaches a observer which implements `ArgminLog` to the solver.
pub fn add_observer<OBS: Observe<O> + 'static>(
mut self,
observer: OBS,
mode: ObserverMode,
) -> Self {
self.observers.push(observer, mode);
self
}
/// Set maximum number of iterations
pub fn max_iters(mut self, iters: u64) -> Self {
self.state.max_iters(iters);
self
}
/// Set target cost value
pub fn target_cost(mut self, cost: O::Float) -> Self {
self.state.target_cost(cost);
self
}
/// Set cost value
pub fn cost(mut self, cost: O::Float) -> Self {
self.state.cost(cost);
self
}
/// Set Gradient
pub fn grad(mut self, grad: O::Param) -> Self {
self.state.grad(grad);
self
}
/// Set Hessian
pub fn hessian(mut self, hessian: O::Hessian) -> Self {
self.state.hessian(hessian);
self
}
/// Set Jacobian
pub fn jacobian(mut self, jacobian: O::Jacobian) -> Self {
self.state.jacobian(jacobian);
self
}
/// Set checkpoint directory
pub fn checkpoint_dir(mut self, dir: &str) -> Self {
self.checkpoint.set_dir(dir);
self
}
/// Set checkpoint name
pub fn checkpoint_name(mut self, dir: &str) -> Self {
self.checkpoint.set_name(dir);
self
}
/// Set the checkpoint mode
pub fn checkpoint_mode(mut self, mode: CheckpointMode) -> Self {
self.checkpoint.set_mode(mode);
self
}
/// Turn Ctrl-C handling on or off (default: on)
pub fn ctrlc(mut self, ctrlc: bool) -> Self {
self.ctrlc = ctrlc;
self
}
}