Module beta

Source
Expand description

Provides the beta and related function

Enums§

BetaFuncError
Represents the errors that can occur when computing the natural logarithm of the beta function or the regularized lower incomplete beta function.

Functions§

beta
Computes the beta function where a is the first beta parameter and b is the second beta parameter.
beta_inc
Computes the lower incomplete (unregularized) beta function B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x) for a > 0, b > 0, 1 >= x >= 0 where a is the first beta parameter, b is the second beta parameter, and x is the upper limit of the integral
beta_reg
Computes the regularized lower incomplete beta function I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x) a > 0, b > 0, 1 >= x >= 0 where a is the first beta parameter, b is the second beta parameter, and x is the upper limit of the integral.
checked_beta
Computes the beta function where a is the first beta parameter and b is the second beta parameter.
checked_beta_inc
Computes the lower incomplete (unregularized) beta function B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x) for a > 0, b > 0, 1 >= x >= 0 where a is the first beta parameter, b is the second beta parameter, and x is the upper limit of the integral
checked_beta_reg
Computes the regularized lower incomplete beta function I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1), t=0..x) a > 0, b > 0, 1 >= x >= 0 where a is the first beta parameter, b is the second beta parameter, and x is the upper limit of the integral.
checked_ln_beta
Computes the natural logarithm of the beta function where a is the first beta parameter and b is the second beta parameter and a > 0, b > 0.
inv_beta_reg
Computes the inverse of the regularized incomplete beta function
ln_beta
Computes the natural logarithm of the beta function where a is the first beta parameter and b is the second beta parameter and a > 0, b > 0.