polars_core/frame/
chunks.rs1use arrow::record_batch::RecordBatch;
2use rayon::prelude::*;
3
4use crate::prelude::*;
5use crate::utils::{_split_offsets, accumulate_dataframes_vertical_unchecked, split_df_as_ref};
6use crate::POOL;
7
8impl TryFrom<(RecordBatch, &ArrowSchema)> for DataFrame {
9 type Error = PolarsError;
10
11 fn try_from(arg: (RecordBatch, &ArrowSchema)) -> PolarsResult<DataFrame> {
12 let columns: PolarsResult<Vec<Column>> = arg
13 .0
14 .columns()
15 .iter()
16 .zip(arg.1.iter_values())
17 .map(|(arr, field)| Series::try_from((field, arr.clone())).map(Column::from))
18 .collect();
19
20 DataFrame::new(columns?)
21 }
22}
23
24impl DataFrame {
25 pub fn split_chunks(&mut self) -> impl Iterator<Item = DataFrame> + '_ {
26 self.align_chunks_par();
27
28 (0..self.first_col_n_chunks()).map(move |i| unsafe {
29 let columns = self
30 .get_columns()
31 .iter()
32 .map(|column| column.as_materialized_series().select_chunk(i))
33 .map(Column::from)
34 .collect::<Vec<_>>();
35
36 let height = Self::infer_height(&columns);
37 DataFrame::new_no_checks(height, columns)
38 })
39 }
40
41 pub fn split_chunks_by_n(self, n: usize, parallel: bool) -> Vec<DataFrame> {
42 let split = _split_offsets(self.height(), n);
43
44 let split_fn = |(offset, len)| self.slice(offset as i64, len);
45
46 if parallel {
47 POOL.install(|| split.into_par_iter().map(split_fn).collect())
49 } else {
50 split.into_iter().map(split_fn).collect()
51 }
52 }
53}
54
55pub fn chunk_df_for_writing(
60 df: &mut DataFrame,
61 row_group_size: usize,
62) -> PolarsResult<std::borrow::Cow<DataFrame>> {
63 df.align_chunks_par();
65
66 if !df.get_columns().is_empty()
69 && df.get_columns()[0]
70 .as_materialized_series()
71 .chunk_lengths()
72 .take(5)
73 .all(|len| len < row_group_size)
74 {
75 fn finish(scratch: &mut Vec<DataFrame>, new_chunks: &mut Vec<DataFrame>) {
76 let mut new = accumulate_dataframes_vertical_unchecked(scratch.drain(..));
77 new.as_single_chunk_par();
78 new_chunks.push(new);
79 }
80
81 let mut new_chunks = Vec::with_capacity(df.first_col_n_chunks()); let mut scratch = vec![];
83 let mut remaining = row_group_size;
84
85 for df in df.split_chunks() {
86 remaining = remaining.saturating_sub(df.height());
87 scratch.push(df);
88
89 if remaining == 0 {
90 remaining = row_group_size;
91 finish(&mut scratch, &mut new_chunks);
92 }
93 }
94 if !scratch.is_empty() {
95 finish(&mut scratch, &mut new_chunks);
96 }
97 return Ok(std::borrow::Cow::Owned(
98 accumulate_dataframes_vertical_unchecked(new_chunks),
99 ));
100 }
101
102 let n_splits = df.height() / row_group_size;
103 let result = if n_splits > 0 {
104 let mut splits = split_df_as_ref(df, n_splits, false);
105
106 for df in splits.iter_mut() {
107 let n_chunks = df.first_col_n_chunks();
111 if n_chunks > 1 && (df.estimated_size() / n_chunks < 128 * 1024) {
112 df.as_single_chunk_par();
113 }
114 }
115
116 std::borrow::Cow::Owned(accumulate_dataframes_vertical_unchecked(splits))
117 } else {
118 std::borrow::Cow::Borrowed(df)
119 };
120 Ok(result)
121}